RewriteLM: An Instruction-Tuned Large Language Model for Text Rewriting
- URL: http://arxiv.org/abs/2305.15685v2
- Date: Tue, 19 Dec 2023 23:57:01 GMT
- Title: RewriteLM: An Instruction-Tuned Large Language Model for Text Rewriting
- Authors: Lei Shu, Liangchen Luo, Jayakumar Hoskere, Yun Zhu, Yinxiao Liu, Simon
Tong, Jindong Chen, Lei Meng
- Abstract summary: Large Language Models (LLMs) have demonstrated impressive capabilities in creative tasks such as storytelling and E-mail generation.
We develop new strategies for instruction tuning and reinforcement learning to better align LLMs for cross-sentence rewriting tasks.
OpenRewriteEval, a novel benchmark covers a wide variety of rewriting types expressed through natural language instructions.
- Score: 11.306772273707253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated impressive capabilities in
creative tasks such as storytelling and E-mail generation. However, as LLMs are
primarily trained on final text results rather than intermediate revisions, it
might be challenging for them to perform text rewriting tasks. Most studies in
the rewriting tasks focus on a particular transformation type within the
boundaries of single sentences. In this work, we develop new strategies for
instruction tuning and reinforcement learning to better align LLMs for
cross-sentence rewriting tasks using diverse wording and structures expressed
through natural languages including 1) generating rewriting instruction data
from Wiki edits and public corpus through instruction generation and
chain-of-thought prompting; 2) collecting comparison data for reward model
training through a new ranking function. To facilitate this research, we
introduce OpenRewriteEval, a novel benchmark covers a wide variety of rewriting
types expressed through natural language instructions. Our results show
significant improvements over a variety of baselines. The public repository is
available on GitHub under Google Research
(https://github.com/google-research/google-research/tree/master/rewritelm).
Related papers
- MaFeRw: Query Rewriting with Multi-Aspect Feedbacks for Retrieval-Augmented Large Language Models [34.39053202801489]
In a real-world RAG system, the current query often involves spoken ellipses and ambiguous references from dialogue contexts.
We propose a novel query rewriting method MaFeRw, which improves RAG performance by integrating multi-aspect feedback from both the retrieval process and generated results.
Experimental results on two conversational RAG datasets demonstrate that MaFeRw achieves superior generation metrics and more stable training compared to baselines.
arXiv Detail & Related papers (2024-08-30T07:57:30Z) - RaFe: Ranking Feedback Improves Query Rewriting for RAG [83.24385658573198]
We propose a framework for training query rewriting models free of annotations.
By leveraging a publicly available reranker, oursprovides feedback aligned well with the rewriting objectives.
arXiv Detail & Related papers (2024-05-23T11:00:19Z) - Tuna: Instruction Tuning using Feedback from Large Language Models [74.04950416204551]
We propose finetuning an instruction-tuned large language model using our novel textitprobabilistic ranking and textitcontextual ranking approaches.
Probabilistic ranking enables the instruction-tuned model to inherit the relative rankings of high-quality and low-quality responses from the teacher LLM.
On the other hand, learning with contextual ranking allows the model to refine its own response distribution using the contextual understanding ability of stronger LLMs.
arXiv Detail & Related papers (2023-10-20T09:55:06Z) - Enhancing Conversational Search: Large Language Model-Aided Informative
Query Rewriting [42.35788605017555]
We propose utilizing large language models (LLMs) as query rewriters.
We define four essential properties for well-formed rewrites and incorporate all of them into the instruction.
We introduce the role of rewrite editors for LLMs when initial query rewrites are available, forming a "rewrite-then-edit" process.
arXiv Detail & Related papers (2023-10-15T03:04:17Z) - Learning to Rewrite Prompts for Personalized Text Generation [27.50476377270294]
We propose a novel method to automatically revise prompts for personalized text generation.
The proposed method takes the initial prompts generated by a state-of-the-art, multistage framework for personalized generation and rewrites a few critical components.
In-depth analysis of the rewritten prompts shows that they are not only human readable, but also able to guide manual revision of prompts.
arXiv Detail & Related papers (2023-09-29T21:15:49Z) - XATU: A Fine-grained Instruction-based Benchmark for Explainable Text Updates [7.660511135287692]
This paper introduces XATU, the first benchmark specifically designed for fine-grained instruction-based explainable text editing.
XATU considers finer-grained text editing tasks of varying difficulty, incorporating lexical, syntactic, semantic, and knowledge-intensive edit aspects.
We demonstrate the effectiveness of instruction tuning and the impact of underlying architecture across various editing tasks.
arXiv Detail & Related papers (2023-09-20T04:58:59Z) - TIM: Teaching Large Language Models to Translate with Comparison [78.66926087162672]
We propose a novel framework using examples in comparison to teach LLMs to learn translation.
Our approach involves presenting the model with examples of correct and incorrect translations and using a preference loss to guide the model's learning.
Our findings offer a new perspective on fine-tuning LLMs for translation tasks and provide a promising solution for generating high-quality translations.
arXiv Detail & Related papers (2023-07-10T08:15:40Z) - Query Rewriting for Retrieval-Augmented Large Language Models [139.242907155883]
Large Language Models (LLMs) play powerful, black-box readers in the retrieve-then-read pipeline.
This work introduces a new framework, Rewrite-Retrieve-Read instead of the previous retrieve-then-read for the retrieval-augmented LLMs.
arXiv Detail & Related papers (2023-05-23T17:27:50Z) - Learning to Transfer Prompts for Text Generation [97.64625999380425]
We propose a novel prompt-based method (PTG) for text generation in a transferable setting.
First, PTG learns a set of source prompts for various source generation tasks and then transfers these prompts as target prompts to perform target generation tasks.
In extensive experiments, PTG yields competitive or better results than fine-tuning methods.
arXiv Detail & Related papers (2022-05-03T14:53:48Z) - Abstractive Summarization of Spoken and Written Instructions with BERT [66.14755043607776]
We present the first application of the BERTSum model to conversational language.
We generate abstractive summaries of narrated instructional videos across a wide variety of topics.
We envision this integrated as a feature in intelligent virtual assistants, enabling them to summarize both written and spoken instructional content upon request.
arXiv Detail & Related papers (2020-08-21T20:59:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.