MaFeRw: Query Rewriting with Multi-Aspect Feedbacks for Retrieval-Augmented Large Language Models
- URL: http://arxiv.org/abs/2408.17072v1
- Date: Fri, 30 Aug 2024 07:57:30 GMT
- Title: MaFeRw: Query Rewriting with Multi-Aspect Feedbacks for Retrieval-Augmented Large Language Models
- Authors: Yujing Wang, Hainan Zhang, Liang Pang, Liang Pang, Hongwei Zheng, Zhiming Zheng,
- Abstract summary: In a real-world RAG system, the current query often involves spoken ellipses and ambiguous references from dialogue contexts.
We propose a novel query rewriting method MaFeRw, which improves RAG performance by integrating multi-aspect feedback from both the retrieval process and generated results.
Experimental results on two conversational RAG datasets demonstrate that MaFeRw achieves superior generation metrics and more stable training compared to baselines.
- Score: 34.39053202801489
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In a real-world RAG system, the current query often involves spoken ellipses and ambiguous references from dialogue contexts, necessitating query rewriting to better describe user's information needs. However, traditional context-based rewriting has minimal enhancement on downstream generation tasks due to the lengthy process from query rewriting to response generation. Some researchers try to utilize reinforcement learning with generation feedback to assist the rewriter, but these sparse rewards provide little guidance in most cases, leading to unstable training and generation results. We find that user's needs are also reflected in the gold document, retrieved documents and ground truth. Therefore, by feeding back these multi-aspect dense rewards to query rewriting, more stable and satisfactory responses can be achieved. In this paper, we propose a novel query rewriting method MaFeRw, which improves RAG performance by integrating multi-aspect feedback from both the retrieval process and generated results. Specifically, we first use manual data to train a T5 model for the rewriter initialization. Next, we design three metrics as reinforcement learning feedback: the similarity between the rewritten query and the gold document, the ranking metrics, and ROUGE between the generation and the ground truth. Inspired by RLAIF, we train three kinds of reward models for the above metrics to achieve more efficient training. Finally, we combine the scores of these reward models as feedback, and use PPO algorithm to explore the optimal query rewriting strategy. Experimental results on two conversational RAG datasets demonstrate that MaFeRw achieves superior generation metrics and more stable training compared to baselines.
Related papers
- DMQR-RAG: Diverse Multi-Query Rewriting for RAG [26.518517678671376]
Large language models often encounter challenges with static knowledge and hallucinations, which undermine their reliability.
We introduce DMQR-RAG, a Diverse Multi-Query Rewriting framework to improve the performance of both document retrieval and final responses in RAG.
arXiv Detail & Related papers (2024-11-20T09:43:30Z) - Graph of Records: Boosting Retrieval Augmented Generation for Long-context Summarization with Graphs [12.878608250420832]
We propose textitgraph of records (textbfGoR) to enhance RAG for long-context global summarization.
Inspired by the textitretrieve-then-generate paradigm of RAG, we construct a graph by establishing an edge between the retrieved text chunks and the corresponding LLM-generated response.
To further uncover the intricate correlations between them, GoR features a textitgraph neural network and an elaborately designed textitBERTScore-based objective for self-supervised model training.
arXiv Detail & Related papers (2024-10-14T18:34:29Z) - Adaptive Query Rewriting: Aligning Rewriters through Marginal Probability of Conversational Answers [66.55612528039894]
AdaQR is a framework for training query rewriting models with limited rewrite annotations from seed datasets and completely no passage label.
A novel approach is proposed to assess retriever's preference for these candidates by the probability of answers conditioned on the conversational query.
arXiv Detail & Related papers (2024-06-16T16:09:05Z) - RaFe: Ranking Feedback Improves Query Rewriting for RAG [83.24385658573198]
We propose a framework for training query rewriting models free of annotations.
By leveraging a publicly available reranker, oursprovides feedback aligned well with the rewriting objectives.
arXiv Detail & Related papers (2024-05-23T11:00:19Z) - RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation [42.82192656794179]
Large Language Models (LLMs) exhibit remarkable capabilities but are prone to generating inaccurate or hallucinatory responses.
This limitation stems from their reliance on vast pretraining datasets, making them susceptible to errors in unseen scenarios.
Retrieval-Augmented Generation (RAG) addresses this by incorporating external, relevant documents into the response generation process.
arXiv Detail & Related papers (2024-03-31T08:58:54Z) - Continual Referring Expression Comprehension via Dual Modular
Memorization [133.46886428655426]
Referring Expression (REC) aims to localize an image region of a given object described by a natural-language expression.
Existing REC algorithms make a strong assumption that training data feeding into a model are given upfront, which degrades its practicality for real-world scenarios.
In this paper, we propose Continual Referring Expression (CREC), a new setting for REC, where a model is learning on a stream of incoming tasks.
In order to continuously improve the model on sequential tasks without forgetting prior learned knowledge and without repeatedly re-training from a scratch, we propose an effective baseline method named Dual Modular Memorization
arXiv Detail & Related papers (2023-11-25T02:58:51Z) - Query Rewriting for Retrieval-Augmented Large Language Models [139.242907155883]
Large Language Models (LLMs) play powerful, black-box readers in the retrieve-then-read pipeline.
This work introduces a new framework, Rewrite-Retrieve-Read instead of the previous retrieve-then-read for the retrieval-augmented LLMs.
arXiv Detail & Related papers (2023-05-23T17:27:50Z) - Incorporating Relevance Feedback for Information-Seeking Retrieval using
Few-Shot Document Re-Ranking [56.80065604034095]
We introduce a kNN approach that re-ranks documents based on their similarity with the query and the documents the user considers relevant.
To evaluate our different integration strategies, we transform four existing information retrieval datasets into the relevance feedback scenario.
arXiv Detail & Related papers (2022-10-19T16:19:37Z) - Recitation-Augmented Language Models [85.30591349383849]
We show that RECITE is a powerful paradigm for knowledge-intensive NLP tasks.
Specifically, we show that by utilizing recitation as the intermediate step, a recite-and-answer scheme can achieve new state-of-the-art performance.
arXiv Detail & Related papers (2022-10-04T00:49:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.