論文の概要: Multilingual Text-to-Speech Synthesis for Turkic Languages Using
Transliteration
- arxiv url: http://arxiv.org/abs/2305.15749v1
- Date: Thu, 25 May 2023 05:57:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-26 17:04:31.433929
- Title: Multilingual Text-to-Speech Synthesis for Turkic Languages Using
Transliteration
- Title(参考訳): 音訳を用いたトルコ語多言語テキスト音声合成
- Authors: Rustem Yeshpanov, Saida Mussakhojayeva, Yerbolat Khassanov
- Abstract要約: 本研究の目的は,低リソースのトルコ語10言語を対象とした多言語テキスト音声合成システムの構築である。
ゼロショット学習のシナリオを特に対象とし、ある言語のデータを用いて訓練されたTSモデルを他の未知言語のための音声合成に適用する。
Tacotron 2 アーキテクチャに基づくエンドツーエンド TTS システムは、カザフ語で利用可能なデータのみを用いて訓練された。
- 参考スコア(独自算出の注目度): 3.0122461286351796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work aims to build a multilingual text-to-speech (TTS) synthesis system
for ten lower-resourced Turkic languages: Azerbaijani, Bashkir, Kazakh, Kyrgyz,
Sakha, Tatar, Turkish, Turkmen, Uyghur, and Uzbek. We specifically target the
zero-shot learning scenario, where a TTS model trained using the data of one
language is applied to synthesise speech for other, unseen languages. An
end-to-end TTS system based on the Tacotron 2 architecture was trained using
only the available data of the Kazakh language. To generate speech for the
other Turkic languages, we first mapped the letters of the Turkic alphabets
onto the symbols of the International Phonetic Alphabet (IPA), which were then
converted to the Kazakh alphabet letters. To demonstrate the feasibility of the
proposed approach, we evaluated the multilingual Turkic TTS model subjectively
and obtained promising results. To enable replication of the experiments, we
make our code and dataset publicly available in our GitHub repository.
- Abstract(参考訳): この研究は、アゼルバイジャン語、バシュキル語、カザフ語、キルギス語、サハ語、タタール語、トルコ語、トルクメン語、ウイグル語、ウズベク語という10の低資源トルコ語のための多言語音声合成システムを構築することを目的としている。
ゼロショット学習のシナリオを特に対象とし、ある言語のデータを用いて訓練されたTSモデルを他の未知言語のための音声合成に適用する。
Tacotron 2 アーキテクチャに基づくエンドツーエンド TTS システムは、カザフ語で利用可能なデータのみを用いて訓練された。
他のテュルク諸語の音声を生成するため、まずトルコ語アルファベットの文字を国際音声アルファベット(IPA)の記号にマッピングし、その後カザフ語アルファベットに変換した。
提案手法の有効性を示すため,多言語トルコ語TSモデルを主観評価し,有望な結果を得た。
実験の複製を可能にするため、コードとデータセットをGitHubリポジトリで公開しています。
関連論文リスト
- Towards Zero-Shot Text-To-Speech for Arabic Dialects [16.10882912169842]
ZS-TTS (Zero-shot Multi-Speaker text-to-speech) システムは英語に進歩しているが、リソース不足のためまだ遅れている。
まず、既存のデータセットを音声合成のニーズに合わせて適応させることにより、アラビア語のこのギャップに対処する。
アラビア語の方言識別モデルを用いて、予め定義された方言ラベルが多言語環境でのZS-TTSモデルの改善に与える影響を探索する。
論文 参考訳(メタデータ) (2024-06-24T15:58:15Z) - CoSTA: Code-Switched Speech Translation using Aligned Speech-Text Interleaving [61.73180469072787]
インド語から英語のテキストへのコード変更音声の音声翻訳(ST)の問題に焦点をあてる。
本稿では、事前訓練された自動音声認識(ASR)と機械翻訳(MT)モジュールを足場として、新しいエンドツーエンドモデルアーキテクチャCOSTAを提案する。
COSTAは、多くの競合するカスケードおよびエンドツーエンドのマルチモーダルベースラインを3.5BLEUポイントまで上回っている。
論文 参考訳(メタデータ) (2024-06-16T16:10:51Z) - Many-to-Many Spoken Language Translation via Unified Speech and Text
Representation Learning with Unit-to-Unit Translation [39.74625363642717]
自己教師型音声モデルから符号化された音声特徴の量子化表現である音声単位を用いた多言語音声の表現を行う。
そこで本研究では,多言語データに基づいて,ユニット・ツー・ユニット翻訳(UTUT)を目標としたエンコーダ・デコーダ構造モデルを訓練する。
UTUTを用いた1つの事前学習モデルは、音声音声翻訳(STS)、多言語テキスト音声合成(TTS)、テキスト音声翻訳(TTST)などの多言語音声およびテキスト関連タスクに利用できる。
論文 参考訳(メタデータ) (2023-08-03T15:47:04Z) - Learning to Speak from Text: Zero-Shot Multilingual Text-to-Speech with
Unsupervised Text Pretraining [65.30528567491984]
本稿では,対象言語に対するテキストのみのデータを用いたゼロショット多言語TS法を提案する。
テキストのみのデータを使用することで、低リソース言語向けのTSシステムの開発が可能になる。
評価の結果,文字誤り率が12%未満のゼロショットTSは,見当たらない言語では高い知能性を示した。
論文 参考訳(メタデータ) (2023-01-30T00:53:50Z) - Beyond Arabic: Software for Perso-Arabic Script Manipulation [67.31374614549237]
ペルソ・アラビア文字を使用する言語の書き起こしシステムを操作するための有限状態トランスデューサ(FST)コンポーネントとそれに対応するユーティリティのセットを提供する。
ライブラリはまた、単純なFSTベースのロマン化と文字変換も提供する。
論文 参考訳(メタデータ) (2023-01-26T20:37:03Z) - Speech-to-Speech Translation For A Real-world Unwritten Language [62.414304258701804]
本研究では、ある言語から別の言語に音声を翻訳する音声音声翻訳(S2ST)について研究する。
我々は、トレーニングデータ収集、モデル選択、ベンチマークデータセットのリリースからエンドツーエンドのソリューションを提示します。
論文 参考訳(メタデータ) (2022-11-11T20:21:38Z) - Virtuoso: Massive Multilingual Speech-Text Joint Semi-Supervised
Learning for Text-To-Speech [37.942466944970704]
本稿では,テキスト音声合成(TTS)モデルのための多言語共同学習フレームワークであるVirtuosoを提案する。
様々な音声およびテキストデータからTSモデルをトレーニングするために、教師なし(TTSおよびASRデータ)と教師なし(非教師なし)のデータセットを扱うように、異なるトレーニングスキームが設計されている。
実験により、Virtuosoで訓練された多言語TSモデルは、見かけの言語におけるベースラインモデルよりも、自然性や知性に優れることが示された。
論文 参考訳(メタデータ) (2022-10-27T14:09:48Z) - Dict-TTS: Learning to Pronounce with Prior Dictionary Knowledge for
Text-to-Speech [88.22544315633687]
ポリホンの曖昧さは, 音声合成システムにおいて, 自然なテキストシーケンスから正確な発音知識を抽出することを目的としている。
オンラインウェブサイト辞書を用いた意味認識型テキスト音声合成モデルであるDict-TTSを提案する。
3つの言語による実験結果から,我々のモデルは発音精度においていくつかの強いベースラインモデルより優れていることが示された。
論文 参考訳(メタデータ) (2022-06-05T10:50:34Z) - KazakhTTS2: Extending the Open-Source Kazakh TTS Corpus With More Data,
Speakers, and Topics [4.859986264602551]
我々は、以前リリースした Kazakh text-to-speech (KazakhTTS) 合成コーパスの拡張版を提示する。
新しいKazakhTTS2コーパスでは、全体的なサイズは93時間から271時間に向上した。
講演者の数は2人から5人(女性3人、男性2人)に増えた。
論文 参考訳(メタデータ) (2022-01-15T06:54:30Z) - KazakhTTS: An Open-Source Kazakh Text-to-Speech Synthesis Dataset [4.542831770689362]
本稿では,世界中の1300万人以上が話す低リソース言語であるKazakhの高品質なオープンソース音声合成データセットについて紹介する。
このデータセットは、2人のプロの話者が話した約91時間の録音音声から成り立っている。
これは、アカデミックと産業の両方で、カザフスタンのテキスト音声アプリケーションを促進するために開発された、初めて公開された大規模なデータセットである。
論文 参考訳(メタデータ) (2021-04-17T05:49:57Z) - Phonological Features for 0-shot Multilingual Speech Synthesis [50.591267188664666]
単言語モデルにおいても,トレーニング中に見つからない言語に対して,コードスイッチングが可能であることを示す。
テスト時には、訓練で見たことのない音の近似を含む、新しい言語で、理解不能で、コードスイッチトされた音声を生成する。
論文 参考訳(メタデータ) (2020-08-06T18:25:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。