論文の概要: Dynamic Context Pruning for Efficient and Interpretable Autoregressive
Transformers
- arxiv url: http://arxiv.org/abs/2305.15805v1
- Date: Thu, 25 May 2023 07:39:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-26 16:34:51.478427
- Title: Dynamic Context Pruning for Efficient and Interpretable Autoregressive
Transformers
- Title(参考訳): 効率良く解釈可能な自己回帰変圧器のための動的コンテキストプルーニング
- Authors: Sotiris Anagnostidis, Dario Pavllo, Luca Biggio, Lorenzo Noci,
Aurelien Lucchi, Thomas Hoffmann
- Abstract要約: 本稿では,モデル表現性を保ちながら文脈情報を動的に生成する手法を提案する。
本手法では,文脈からどの非形式的トークンをドロップできるかを学習可能なメカニズムを用いて決定する。
我々の参照実装は、推論スループットの増大とメモリの節約を最大2ドルまで達成します。
- 参考スコア(独自算出の注目度): 5.054126532912721
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autoregressive Transformers adopted in Large Language Models (LLMs) are hard
to scale to long sequences. Despite several works trying to reduce their
computational cost, most of LLMs still adopt attention layers between all pairs
of tokens in the sequence, thus incurring a quadratic cost. In this study, we
present a novel approach that dynamically prunes contextual information while
preserving the model's expressiveness, resulting in reduced memory and
computational requirements during inference. Our method employs a learnable
mechanism that determines which uninformative tokens can be dropped from the
context at any point across the generation process. By doing so, our approach
not only addresses performance concerns but also enhances interpretability,
providing valuable insight into the model's decision-making process. Our
technique can be applied to existing pre-trained models through a
straightforward fine-tuning process, and the pruning strength can be specified
by a sparsity parameter. Notably, our empirical findings demonstrate that we
can effectively prune up to 80\% of the context without significant performance
degradation on downstream tasks, offering a valuable tool for mitigating
inference costs. Our reference implementation achieves up to $2\times$ increase
in inference throughput and even greater memory savings.
- Abstract(参考訳): 大規模言語モデル(llm)で採用されている自己回帰トランスフォーマーは、長いシーケンスにスケールするのは難しい。
計算コストを減らそうとするいくつかの研究にもかかわらず、LLMのほとんどの研究は、シークエンス内の全てのトークン間の注意層を採用しており、2次的なコストが生じる。
本研究では,モデル表現性を維持しながら文脈情報を動的にプルーピングする新しい手法を提案する。
本手法では,生成プロセスの任意の時点において,どの非形式的トークンをドロップするかを決定する学習可能な機構を用いる。
そうすることで、私たちのアプローチはパフォーマンスの懸念に対処するだけでなく、解釈性も向上させ、モデルの意思決定プロセスに対する貴重な洞察を提供します。
本手法は, 簡易な微調整プロセスによって既存の事前学習モデルに適用でき, 刈り込み強度をスパーシティパラメータで指定できる。
特に,経験的な結果から,下流タスクの大幅なパフォーマンス低下を伴わずに,コンテクストの最大80\%を効果的にプルーピングできることが示され,推論コストの軽減に有用なツールを提供することができた。
リファレンス実装では、推論スループットの最大$2\times$向上と、さらにメモリ節約を実現しています。
関連論文リスト
- Cheaply Evaluating Inference Efficiency Metrics for Autoregressive
Transformer APIs [66.30706841821123]
大規模言語モデル(LLM)は、自然言語処理において多くの最先端システムに電力を供給する。
LLMは、推論時でさえ非常に計算コストが高い。
モデル間での推論効率を比較するための新しい指標を提案する。
論文 参考訳(メタデータ) (2023-05-03T21:51:42Z) - Towards Compute-Optimal Transfer Learning [82.88829463290041]
我々は、事前訓練されたモデルのゼロショット構造化プルーニングにより、性能を最小限に抑えて計算効率を向上させることができると主張している。
その結果,事前訓練されたモデルの畳み込み畳み込みフィルタは,低計算条件下で20%以上の性能向上をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-25T21:49:09Z) - Confident Adaptive Language Modeling [95.45272377648773]
CALMは、入力と生成時間ごとに異なる量の計算を動的に割り当てるフレームワークである。
ハイパフォーマンスを確実に維持しつつ、計算能力、潜在的スピードアップを最大3ドルまで削減する上で、我々のフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-14T17:00:19Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
ICL (Few-shot in-context Learning) は、予測を行うたびにトレーニング例を全て処理するので、かなりの計算、メモリ、ストレージコストを発生させる。
パラメータ効率の良い微調整は、モデルの新たなタスクの実行を可能にするために、小さなパラメータセットをトレーニングする、代替パラダイムを提供する。
本稿では,少数ショットICLとパラメータ効率の微調整を厳密に比較し,後者が計算コストを劇的に削減できることを示す。
論文 参考訳(メタデータ) (2022-05-11T17:10:41Z) - A Sparsity-promoting Dictionary Model for Variational Autoencoders [16.61511959679188]
深層生成モデルにおける潜伏空間の構造化は、より表現力のあるモデルと解釈可能な表現を得るために重要である。
本稿では,空間の空間構造をスパーシティ・プロモーティング・辞書・モデルを用いて簡易かつ効果的に構築する手法を提案する。
論文 参考訳(メタデータ) (2022-03-29T17:13:11Z) - Memory Efficient Continual Learning for Neural Text Classification [10.70710638820641]
そこで本研究では,事前学習モデルを用いてテキスト分類を行う手法を提案する。
実験により,本手法では,他の手法と比較して,モデルパラメータが著しく少ないことが実証された。
我々の手法はほとんど忘れられませんが、予測性能は技術水準と同等に保たれますが、メモリ効率は低いです。
論文 参考訳(メタデータ) (2022-03-09T10:57:59Z) - Improving Deep Learning Interpretability by Saliency Guided Training [36.782919916001624]
精度法はモデル予測において重要な入力特徴を強調するために広く用いられている。
既存の方法の多くは、修正された勾配関数のバックプロパゲーションを使用して、サリエンシマップを生成する。
本稿では,予測に使用する雑音勾配を低減するために,ニューラルネットワークに対するサリエンシ指導訓練手法を提案する。
論文 参考訳(メタデータ) (2021-11-29T06:05:23Z) - A Simple but Tough-to-Beat Data Augmentation Approach for Natural
Language Understanding and Generation [53.8171136907856]
カットオフと呼ばれる、シンプルで効果的なデータ拡張戦略のセットを紹介します。
カットオフはサンプリング一貫性に依存しているため、計算オーバーヘッドが少なくなる。
cutoffは、敵のトレーニングを一貫して上回り、IWSLT2014 German- English データセットで最先端の結果を達成する。
論文 参考訳(メタデータ) (2020-09-29T07:08:35Z) - Masking as an Efficient Alternative to Finetuning for Pretrained
Language Models [49.64561153284428]
我々は、微調整によって修正する代わりに、事前訓練された重量に対する選択的な二乗マスクを学習する。
内在的評価では、マスキング言語モデルによって計算された表現が、下流タスクの解決に必要な情報を符号化していることを示す。
論文 参考訳(メタデータ) (2020-04-26T15:03:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。