Stochastic Modified Equations and Dynamics of Dropout Algorithm
- URL: http://arxiv.org/abs/2305.15850v1
- Date: Thu, 25 May 2023 08:42:25 GMT
- Title: Stochastic Modified Equations and Dynamics of Dropout Algorithm
- Authors: Zhongwang Zhang, Yuqing Li, Tao Luo, Zhi-Qin John Xu
- Abstract summary: Dropout is a widely utilized regularization technique in the training of neural networks.
Its underlying mechanism and its impact on achieving good abilities remain poorly understood.
- Score: 4.811269936680572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dropout is a widely utilized regularization technique in the training of
neural networks, nevertheless, its underlying mechanism and its impact on
achieving good generalization abilities remain poorly understood. In this work,
we derive the stochastic modified equations for analyzing the dynamics of
dropout, where its discrete iteration process is approximated by a class of
stochastic differential equations. In order to investigate the underlying
mechanism by which dropout facilitates the identification of flatter minima, we
study the noise structure of the derived stochastic modified equation for
dropout. By drawing upon the structural resemblance between the Hessian and
covariance through several intuitive approximations, we empirically demonstrate
the universal presence of the inverse variance-flatness relation and the
Hessian-variance relation, throughout the training process of dropout. These
theoretical and empirical findings make a substantial contribution to our
understanding of the inherent tendency of dropout to locate flatter minima.
Related papers
- Toward Understanding In-context vs. In-weight Learning [50.24035812301655]
We identify simplified distributional properties that give rise to the emergence and disappearance of in-context learning.
We then extend the study to a full large language model, showing how fine-tuning on various collections of natural language prompts can elicit similar in-context and in-weight learning behaviour.
arXiv Detail & Related papers (2024-10-30T14:09:00Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
We introduce the unhinged loss, a concise loss function, that offers more mathematical opportunities to analyze closed-form dynamics.
The unhinged loss allows for considering more practical techniques, such as time-vary learning rates and feature normalization.
arXiv Detail & Related papers (2023-12-13T02:11:07Z) - Knowledge Distillation Performs Partial Variance Reduction [93.6365393721122]
Knowledge distillation is a popular approach for enhancing the performance of ''student'' models.
The underlying mechanics behind knowledge distillation (KD) are still not fully understood.
We show that KD can be interpreted as a novel type of variance reduction mechanism.
arXiv Detail & Related papers (2023-05-27T21:25:55Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
We propose a novel non-parametric learning paradigm for the identification of drift and diffusion coefficients of non-linear differential equations.
The key idea essentially consists of fitting a RKHS-based approximation of the corresponding Fokker-Planck equation to such observations.
arXiv Detail & Related papers (2023-05-24T20:43:47Z) - Fluctuations, Bias, Variance & Ensemble of Learners: Exact Asymptotics
for Convex Losses in High-Dimension [25.711297863946193]
We develop a theory for the study of fluctuations in an ensemble of generalised linear models trained on different, but correlated, features.
We provide a complete description of the joint distribution of the empirical risk minimiser for generic convex loss and regularisation in the high-dimensional limit.
arXiv Detail & Related papers (2022-01-31T17:44:58Z) - Covariate Shift in High-Dimensional Random Feature Regression [44.13449065077103]
Covariate shift is a significant obstacle in the development of robust machine learning models.
We present a theoretical understanding in context of modern machine learning.
arXiv Detail & Related papers (2021-11-16T05:23:28Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
Gradient Starvation arises when cross-entropy loss is minimized by capturing only a subset of features relevant for the task.
This work provides a theoretical explanation for the emergence of such feature imbalance in neural networks.
arXiv Detail & Related papers (2020-11-18T18:52:08Z) - Understanding Double Descent Requires a Fine-Grained Bias-Variance
Decomposition [34.235007566913396]
We describe an interpretable, symmetric decomposition of the variance into terms associated with the labels.
We find that the bias decreases monotonically with the network width, but the variance terms exhibit non-monotonic behavior.
We also analyze the strikingly rich phenomenology that arises.
arXiv Detail & Related papers (2020-11-04T21:04:02Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.