Understanding Double Descent Requires a Fine-Grained Bias-Variance
Decomposition
- URL: http://arxiv.org/abs/2011.03321v1
- Date: Wed, 4 Nov 2020 21:04:02 GMT
- Title: Understanding Double Descent Requires a Fine-Grained Bias-Variance
Decomposition
- Authors: Ben Adlam and Jeffrey Pennington
- Abstract summary: We describe an interpretable, symmetric decomposition of the variance into terms associated with the labels.
We find that the bias decreases monotonically with the network width, but the variance terms exhibit non-monotonic behavior.
We also analyze the strikingly rich phenomenology that arises.
- Score: 34.235007566913396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classical learning theory suggests that the optimal generalization
performance of a machine learning model should occur at an intermediate model
complexity, with simpler models exhibiting high bias and more complex models
exhibiting high variance of the predictive function. However, such a simple
trade-off does not adequately describe deep learning models that simultaneously
attain low bias and variance in the heavily overparameterized regime. A primary
obstacle in explaining this behavior is that deep learning algorithms typically
involve multiple sources of randomness whose individual contributions are not
visible in the total variance. To enable fine-grained analysis, we describe an
interpretable, symmetric decomposition of the variance into terms associated
with the randomness from sampling, initialization, and the labels. Moreover, we
compute the high-dimensional asymptotic behavior of this decomposition for
random feature kernel regression, and analyze the strikingly rich phenomenology
that arises. We find that the bias decreases monotonically with the network
width, but the variance terms exhibit non-monotonic behavior and can diverge at
the interpolation boundary, even in the absence of label noise. The divergence
is caused by the \emph{interaction} between sampling and initialization and can
therefore be eliminated by marginalizing over samples (i.e. bagging) \emph{or}
over the initial parameters (i.e. ensemble learning).
Related papers
- Revisiting Optimism and Model Complexity in the Wake of Overparameterized Machine Learning [6.278498348219108]
We revisit model complexity from first principles, by first reinterpreting and then extending the classical statistical concept of (effective) degrees of freedom.
We demonstrate the utility of our proposed complexity measures through a mix of conceptual arguments, theory, and experiments.
arXiv Detail & Related papers (2024-10-02T06:09:57Z) - Aliasing and Label-Independent Decomposition of Risk: Beyond the bias-variance trade-off [0.0]
A central problem in data science is to use potentially noisy samples to predict function values for unseen inputs.
We introduce an alternative paradigm called the generalized aliasing decomposition (GAD)
GAD can be explicitly calculated from the relationship between model class and samples without seeing any data labels.
arXiv Detail & Related papers (2024-08-15T17:49:24Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - The Asymmetric Maximum Margin Bias of Quasi-Homogeneous Neural Networks [26.58848653965855]
We introduce the class of quasi-homogeneous models, which is expressive enough to describe nearly all neural networks with homogeneous activations.
We find that gradient flow implicitly favors a subset of the parameters, unlike in the case of a homogeneous model where all parameters are treated equally.
arXiv Detail & Related papers (2022-10-07T21:14:09Z) - Fluctuations, Bias, Variance & Ensemble of Learners: Exact Asymptotics
for Convex Losses in High-Dimension [25.711297863946193]
We develop a theory for the study of fluctuations in an ensemble of generalised linear models trained on different, but correlated, features.
We provide a complete description of the joint distribution of the empirical risk minimiser for generic convex loss and regularisation in the high-dimensional limit.
arXiv Detail & Related papers (2022-01-31T17:44:58Z) - Information-Theoretic Generalization Bounds for Iterative
Semi-Supervised Learning [81.1071978288003]
In particular, we seek to understand the behaviour of the em generalization error of iterative SSL algorithms using information-theoretic principles.
Our theoretical results suggest that when the class conditional variances are not too large, the upper bound on the generalization error decreases monotonically with the number of iterations, but quickly saturates.
arXiv Detail & Related papers (2021-10-03T05:38:49Z) - Hessian Eigenspectra of More Realistic Nonlinear Models [73.31363313577941]
We make a emphprecise characterization of the Hessian eigenspectra for a broad family of nonlinear models.
Our analysis takes a step forward to identify the origin of many striking features observed in more complex machine learning models.
arXiv Detail & Related papers (2021-03-02T06:59:52Z) - Memorizing without overfitting: Bias, variance, and interpolation in
over-parameterized models [0.0]
The bias-variance trade-off is a central concept in supervised learning.
Modern Deep Learning methods flout this dogma, achieving state-of-the-art performance.
arXiv Detail & Related papers (2020-10-26T22:31:04Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.