Consistent Optimal Transport with Empirical Conditional Measures
- URL: http://arxiv.org/abs/2305.15901v6
- Date: Tue, 11 Jun 2024 02:12:50 GMT
- Title: Consistent Optimal Transport with Empirical Conditional Measures
- Authors: Piyushi Manupriya, Rachit Keerti Das, Sayantan Biswas, Saketha Nath Jagarlapudi,
- Abstract summary: We consider the problem of Optimal Transportation (OT) between two joint distributions when conditioned on a common variable.
We use kernelized-least-squares terms computed over the joint samples, which implicitly match the transport plan's conditional objective.
Our methodology improves upon state-of-the-art methods when employed in applications like prompt learning for few-shot classification and conditional-generation in the context of predicting cell responses to treatment.
- Score: 0.6562256987706128
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given samples from two joint distributions, we consider the problem of Optimal Transportation (OT) between them when conditioned on a common variable. We focus on the general setting where the conditioned variable may be continuous, and the marginals of this variable in the two joint distributions may not be the same. In such settings, standard OT variants cannot be employed, and novel estimation techniques are necessary. Since the main challenge is that the conditional distributions are not explicitly available, the key idea in our OT formulation is to employ kernelized-least-squares terms computed over the joint samples, which implicitly match the transport plan's marginals with the empirical conditionals. Under mild conditions, we prove that our estimated transport plans, as a function of the conditioned variable, are asymptotically optimal. For finite samples, we show that the deviation in terms of our regularized objective is bounded by $O(1/m^{1/4})$, where $m$ is the number of samples. We also discuss how the conditional transport plan could be modelled using explicit probabilistic models as well as using implicit generative ones. We empirically verify the consistency of our estimator on synthetic datasets, where the optimal plan is analytically known. When employed in applications like prompt learning for few-shot classification and conditional-generation in the context of predicting cell responses to treatment, our methodology improves upon state-of-the-art methods.
Related papers
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Optimal Transport-Guided Conditional Score-Based Diffusion Models [63.14903268958398]
Conditional score-based diffusion model (SBDM) is for conditional generation of target data with paired data as condition, and has achieved great success in image translation.
To tackle the applications with partially paired or even unpaired dataset, we propose a novel Optimal Transport-guided Conditional Score-based diffusion model (OTCS) in this paper.
arXiv Detail & Related papers (2023-11-02T13:28:44Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
We show that diffusion models can be adapted to make predictions and provide uncertainty quantification for chaotic dynamical systems.
We develop a probabilistic approximation scheme for the conditional score function which converges to the true distribution as the noise level decreases.
We are able to sample conditionally on nonlinear userdefined events at inference time, and matches data statistics even when sampling from the tails of the distribution.
arXiv Detail & Related papers (2023-06-13T03:42:03Z) - Flow Away your Differences: Conditional Normalizing Flows as an
Improvement to Reweighting [0.0]
We present an alternative to reweighting techniques for modifying distributions to account for a desired change in an underlying conditional distribution.
We employ conditional normalizing flows to learn the full conditional probability distribution.
In our examples, this leads to a statistical precision up to three times greater than using reweighting techniques with identical sample sizes for the source and target distributions.
arXiv Detail & Related papers (2023-04-28T16:33:50Z) - Adversarial sampling of unknown and high-dimensional conditional
distributions [0.0]
In this paper the sampling method, as well as the inference of the underlying distribution, are handled with a data-driven method known as generative adversarial networks (GAN)
GAN trains two competing neural networks to produce a network that can effectively generate samples from the training set distribution.
It is shown that all the versions of the proposed algorithm effectively sample the target conditional distribution with minimal impact on the quality of the samples.
arXiv Detail & Related papers (2021-11-08T12:23:38Z) - Conditional Distributional Treatment Effect with Kernel Conditional Mean
Embeddings and U-Statistic Regression [20.544239209511982]
conditional distributional treatment effect (CoDiTE)
CoDiTE encodes a treatment's distributional aspects beyond the mean.
Experiments on synthetic, semi-synthetic and real datasets demonstrate the merits of our approach.
arXiv Detail & Related papers (2021-02-16T15:09:23Z) - Comparing Probability Distributions with Conditional Transport [63.11403041984197]
We propose conditional transport (CT) as a new divergence and approximate it with the amortized CT (ACT) cost.
ACT amortizes the computation of its conditional transport plans and comes with unbiased sample gradients that are straightforward to compute.
On a wide variety of benchmark datasets generative modeling, substituting the default statistical distance of an existing generative adversarial network with ACT is shown to consistently improve the performance.
arXiv Detail & Related papers (2020-12-28T05:14:22Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.