論文の概要: Sample and Predict Your Latent: Modality-free Sequential Disentanglement
via Contrastive Estimation
- arxiv url: http://arxiv.org/abs/2305.15924v1
- Date: Thu, 25 May 2023 10:50:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-26 15:48:29.247902
- Title: Sample and Predict Your Latent: Modality-free Sequential Disentanglement
via Contrastive Estimation
- Title(参考訳): 潜伏状態のサンプルと予測: コントラスト推定によるモダリティフリーシーケンスアンタングルメント
- Authors: Ilan Naiman, Nimrod Berman, Omri Azencot
- Abstract要約: 外部信号のないコントラスト推定に基づく自己教師付きシーケンシャル・アンタングルメント・フレームワークを提案する。
実際に,データのセマンティックに類似し,異種なビューに対して,統一的で効率的かつ容易にサンプリングできる手法を提案する。
提案手法は,既存の手法と比較して最先端の結果を示す。
- 参考スコア(独自算出の注目度): 2.7759072740347017
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised disentanglement is a long-standing challenge in representation
learning. Recently, self-supervised techniques achieved impressive results in
the sequential setting, where data is time-dependent. However, the latter
methods employ modality-based data augmentations and random sampling or solve
auxiliary tasks. In this work, we propose to avoid that by generating,
sampling, and comparing empirical distributions from the underlying variational
model. Unlike existing work, we introduce a self-supervised sequential
disentanglement framework based on contrastive estimation with no external
signals, while using common batch sizes and samples from the latent space
itself. In practice, we propose a unified, efficient, and easy-to-code sampling
strategy for semantically similar and dissimilar views of the data. We evaluate
our approach on video, audio, and time series benchmarks. Our method presents
state-of-the-art results in comparison to existing techniques. The code is
available at https://github.com/azencot-group/SPYL.
- Abstract(参考訳): unsupervised disentanglementは、表現学習における長年の課題である。
近年,データに依存したシーケンシャル設定において,自己教師あり手法が印象的な結果を得た。
しかし、後者の方法はモダリティに基づくデータ拡張とランダムサンプリングや補助タスクの解法を用いる。
本研究では,基礎となる変動モデルから経験的分布を生成し,サンプリングし,比較することにより,それを回避することを提案する。
既存の作業と異なり,外部信号のないコントラスト推定に基づく自己教師付き逐次的非絡み合いフレームワークを導入し,バッチサイズや潜時空間自体からのサンプルを用いた。
実際に,データのセマンティックに類似し,異種なビューに対して,統一的で効率的かつ容易にサンプリングできる手法を提案する。
我々は,映像,音声,時系列ベンチマークのアプローチを評価した。
本手法は既存の手法と比較し,最新の結果を示す。
コードはhttps://github.com/azencot-group/spylで入手できる。
関連論文リスト
- DistPred: A Distribution-Free Probabilistic Inference Method for Regression and Forecasting [14.390842560217743]
本稿では、回帰予測タスクのためのDistPredという新しい手法を提案する。
予測分布と対象分布の差分を測定するための適切なスコアリングルールを、微分可能な離散形式に変換する。
これにより、モデルは単一のフォワードパスで多数のサンプルをサンプリングし、応答変数の潜在的分布を推定することができる。
論文 参考訳(メタデータ) (2024-06-17T10:33:00Z) - Frugal Actor-Critic: Sample Efficient Off-Policy Deep Reinforcement
Learning Using Unique Experiences [8.983448736644382]
リプレイバッファの効率的な利用は、非政治アクター-犯罪強化学習(RL)アルゴリズムにおいて重要な役割を担っている。
本稿では,ユニークなサンプルを選択してリプレイバッファに追加することに焦点を当てた,サンプル効率を実現する手法を提案する。
論文 参考訳(メタデータ) (2024-02-05T10:04:00Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
モーメントマッチングの目的によってモチベーションされ、複合的エラーを軽減し、局所的(しかし前方的な)遷移ポリシーを最適化する。
推論において、学習されたポリシーは反復的なサンプリングのジェネレータとして機能し、学習されたエネルギーはサンプルの品質を評価するための軌道レベル尺度として機能する。
論文 参考訳(メタデータ) (2023-11-02T16:45:25Z) - Towards Free Data Selection with General-Purpose Models [71.92151210413374]
望ましいデータ選択アルゴリズムは、限られたアノテーション予算の有用性を最大化するために、最も情報性の高いサンプルを効率的に選択することができる。
アクティブな学習手法で表現された現在のアプローチは、通常、時間を要するモデルのトレーニングとバッチデータ選択を繰り返し繰り返す、面倒なパイプラインに従う。
FreeSelは重いバッチ選択プロセスをバイパスし、効率を大幅に改善し、既存のアクティブラーニングメソッドよりも530倍高速である。
論文 参考訳(メタデータ) (2023-09-29T15:50:14Z) - Multi-Task Self-Supervised Time-Series Representation Learning [3.31490164885582]
時系列表現学習は、時間的ダイナミクスとスパースラベルを持つデータから表現を抽出することができる。
自己教師型タスクの利点を組み合わせた時系列表現学習手法を提案する。
本稿では,時系列分類,予測,異常検出という3つのダウンストリームタスクの枠組みについて検討する。
論文 参考訳(メタデータ) (2023-03-02T07:44:06Z) - Sequential Kernelized Independence Testing [101.22966794822084]
我々は、カーネル化依存度にインスパイアされたシーケンシャルなカーネル化独立試験を設計する。
シミュレーションデータと実データの両方にアプローチのパワーを実証する。
論文 参考訳(メタデータ) (2022-12-14T18:08:42Z) - Learn from Unpaired Data for Image Restoration: A Variational Bayes
Approach [18.007258270845107]
境界分布から抽出したデータから結合確率密度関数を学習するための深層生成法 LUD-VAE を提案する。
本稿では,LUD-VAEによって生成された合成データを用いて,実世界の画像認識と超分解能タスクに適用し,モデルを訓練する。
論文 参考訳(メタデータ) (2022-04-21T13:27:17Z) - Out-of-Scope Intent Detection with Self-Supervision and Discriminative
Training [20.242645823965145]
タスク指向対話システムにおいて、スコープ外インテント検出は実用上重要である。
本稿では,テストシナリオをシミュレートして,スコープ外インテント分類器をエンドツーエンドに学習する手法を提案する。
提案手法を4つのベンチマーク・ダイアログ・データセット上で広範囲に評価し,最先端のアプローチに対する大幅な改善を観察する。
論文 参考訳(メタデータ) (2021-06-16T08:17:18Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Jo-SRC: A Contrastive Approach for Combating Noisy Labels [58.867237220886885]
Jo-SRC (Joint Sample Selection and Model Regularization based on Consistency) というノイズロバスト手法を提案する。
具体的には、対照的な学習方法でネットワークをトレーニングする。
各サンプルの2つの異なるビューからの予測は、クリーンまたは分布不足の「可能性」を推定するために使用されます。
論文 参考訳(メタデータ) (2021-03-24T07:26:07Z) - Evaluating the Disentanglement of Deep Generative Models through
Manifold Topology [66.06153115971732]
本稿では,生成モデルのみを用いた乱れの定量化手法を提案する。
複数のデータセットにまたがるいくつかの最先端モデルを実証的に評価する。
論文 参考訳(メタデータ) (2020-06-05T20:54:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。