Demystifying Oversmoothing in Attention-Based Graph Neural Networks
- URL: http://arxiv.org/abs/2305.16102v4
- Date: Tue, 4 Jun 2024 00:30:31 GMT
- Title: Demystifying Oversmoothing in Attention-Based Graph Neural Networks
- Authors: Xinyi Wu, Amir Ajorlou, Zihui Wu, Ali Jadbabaie,
- Abstract summary: Oversmoothing in Graph Neural Networks (GNNs) refers to the phenomenon where increasing network depth leads to homogeneous node representations.
Previous work has established that Graph Convolutional Networks (GCNs) exponentially lose expressive power.
It remains controversial whether the graph attention mechanism can mitigate oversmoothing.
- Score: 23.853636836842604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Oversmoothing in Graph Neural Networks (GNNs) refers to the phenomenon where increasing network depth leads to homogeneous node representations. While previous work has established that Graph Convolutional Networks (GCNs) exponentially lose expressive power, it remains controversial whether the graph attention mechanism can mitigate oversmoothing. In this work, we provide a definitive answer to this question through a rigorous mathematical analysis, by viewing attention-based GNNs as nonlinear time-varying dynamical systems and incorporating tools and techniques from the theory of products of inhomogeneous matrices and the joint spectral radius. We establish that, contrary to popular belief, the graph attention mechanism cannot prevent oversmoothing and loses expressive power exponentially. The proposed framework extends the existing results on oversmoothing for symmetric GCNs to a significantly broader class of GNN models, including random walk GCNs, Graph Attention Networks (GATs) and (graph) transformers. In particular, our analysis accounts for asymmetric, state-dependent and time-varying aggregation operators and a wide range of common nonlinear activation functions, such as ReLU, LeakyReLU, GELU and SiLU.
Related papers
- Higher-Order GNNs Meet Efficiency: Sparse Sobolev Graph Neural Networks [6.080095317098909]
Graph Neural Networks (GNNs) have shown great promise in modeling relationships between nodes in a graph.
Previous studies have primarily attempted to utilize the information from higher-order neighbors in the graph.
We make a fundamental observation: the regular and the Hadamard power of the Laplacian matrix behave similarly in the spectrum.
We propose a novel graph convolutional operator based on the sparse Sobolev norm of graph signals.
arXiv Detail & Related papers (2024-11-07T09:53:11Z) - Spiking Graph Neural Network on Riemannian Manifolds [51.15400848660023]
Graph neural networks (GNNs) have become the dominant solution for learning on graphs.
Existing spiking GNNs consider graphs in Euclidean space, ignoring the structural geometry.
We present a Manifold-valued Spiking GNN (MSG)
MSG achieves superior performance to previous spiking GNNs and energy efficiency to conventional GNNs.
arXiv Detail & Related papers (2024-10-23T15:09:02Z) - Re-Think and Re-Design Graph Neural Networks in Spaces of Continuous
Graph Diffusion Functionals [7.6435511285856865]
Graph neural networks (GNNs) are widely used in domains like social networks and biological systems.
locality assumption of GNNs hampers their ability to capture long-range dependencies and global patterns in graphs.
We propose a new inductive bias based on variational analysis, drawing inspiration from the Brachchronistoe problem.
arXiv Detail & Related papers (2023-07-01T04:44:43Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
Graph Neural Networks (GNNs) have received extensive research attention for their promising performance in graph machine learning.
Existing approaches, such as GCN and GPRGNN, are not robust in the face of homophily changes on test graphs.
We propose EvenNet, a spectral GNN corresponding to an even-polynomial graph filter.
arXiv Detail & Related papers (2022-05-27T10:48:14Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
We propose a hybrid graph neural network (GNN) framework that combines traditional GCN filters with band-pass filters defined via the geometric scattering transform.
Our theoretical results establish the complementary benefits of the scattering filters to leverage structural information from the graph, while our experiments show the benefits of our method on various learning tasks.
arXiv Detail & Related papers (2022-01-22T00:47:41Z) - Stability of Graph Convolutional Neural Networks to Stochastic
Perturbations [122.12962842842349]
Graph convolutional neural networks (GCNNs) are nonlinear processing tools to learn representations from network data.
Current analysis considers deterministic perturbations but fails to provide relevant insights when topological changes are random.
This paper investigates the stability of GCNNs to perturbed graph perturbations induced by link losses.
arXiv Detail & Related papers (2021-06-19T16:25:28Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Scattering GCN: Overcoming Oversmoothness in Graph Convolutional
Networks [0.0]
Graph convolutional networks (GCNs) have shown promising results in processing graph data by extracting structure-aware features.
Here, we propose to augment conventional GCNs with geometric scattering transforms and residual convolutions.
The former enables band-pass filtering of graph signals, thus alleviating the so-called oversmoothing often encountered in GCNs.
arXiv Detail & Related papers (2020-03-18T18:03:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.