Domain-Adaptive Full-Face Gaze Estimation via Novel-View-Synthesis and Feature Disentanglement
- URL: http://arxiv.org/abs/2305.16140v2
- Date: Sun, 7 Jul 2024 19:06:10 GMT
- Title: Domain-Adaptive Full-Face Gaze Estimation via Novel-View-Synthesis and Feature Disentanglement
- Authors: Jiawei Qin, Takuru Shimoyama, Xucong Zhang, Yusuke Sugano,
- Abstract summary: We propose an effective model training pipeline consisting of a training data synthesis and a gaze estimation model for unsupervised domain adaptation.
The proposed data synthesis leverages the single-image 3D reconstruction to expand the range of the head poses from the source domain without requiring a 3D facial shape dataset.
We propose a disentangling autoencoder network to separate gaze-related features and introduce background augmentation consistency loss to utilize the characteristics of the synthetic source domain.
- Score: 12.857137513211866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Along with the recent development of deep neural networks, appearance-based gaze estimation has succeeded considerably when training and testing within the same domain. Compared to the within-domain task, the variance of different domains makes the cross-domain performance drop severely, preventing gaze estimation deployment in real-world applications. Among all the factors, ranges of head pose and gaze are believed to play significant roles in the final performance of gaze estimation, while collecting large ranges of data is expensive. This work proposes an effective model training pipeline consisting of a training data synthesis and a gaze estimation model for unsupervised domain adaptation. The proposed data synthesis leverages the single-image 3D reconstruction to expand the range of the head poses from the source domain without requiring a 3D facial shape dataset. To bridge the inevitable gap between synthetic and real images, we further propose an unsupervised domain adaptation method suitable for synthetic full-face data. We propose a disentangling autoencoder network to separate gaze-related features and introduce background augmentation consistency loss to utilize the characteristics of the synthetic source domain. Through comprehensive experiments, it shows that the model using only our synthetic training data can perform comparably to real data extended with a large label range. Our proposed domain adaptation approach further improves the performance on multiple target domains. The code and data will be available at https://github.com/ut-vision/AdaptiveGaze.
Related papers
- Controlling Human Shape and Pose in Text-to-Image Diffusion Models via Domain Adaptation [1.3654846342364308]
We present a methodology for conditional control of human shape and pose in pretrained text-to-image diffusion models.
Fine-tuning these diffusion models to adhere to new conditions requires large datasets and high-quality annotations.
We propose a domain-adaptation technique that maintains image quality by isolating synthetically trained conditional information.
arXiv Detail & Related papers (2024-11-07T14:02:41Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - Compositional Semantic Mix for Domain Adaptation in Point Cloud
Segmentation [65.78246406460305]
compositional semantic mixing represents the first unsupervised domain adaptation technique for point cloud segmentation.
We present a two-branch symmetric network architecture capable of concurrently processing point clouds from a source domain (e.g. synthetic) and point clouds from a target domain (e.g. real-world)
arXiv Detail & Related papers (2023-08-28T14:43:36Z) - A New Benchmark: On the Utility of Synthetic Data with Blender for Bare
Supervised Learning and Downstream Domain Adaptation [42.2398858786125]
Deep learning in computer vision has achieved great success with the price of large-scale labeled training data.
The uncontrollable data collection process produces non-IID training and test data, where undesired duplication may exist.
To circumvent them, an alternative is to generate synthetic data via 3D rendering with domain randomization.
arXiv Detail & Related papers (2023-03-16T09:03:52Z) - Domain Adaptation of Synthetic Driving Datasets for Real-World
Autonomous Driving [0.11470070927586014]
Network trained with synthetic data for certain computer vision tasks degrade significantly when tested on real world data.
In this paper, we propose and evaluate novel ways for the betterment of such approaches.
We propose a novel method to efficiently incorporate semantic supervision into this pair selection, which helps in boosting the performance of the model.
arXiv Detail & Related papers (2023-02-08T15:51:54Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
Unsupervised sim-to-real domain adaptation (UDA) for semantic segmentation aims to improve the real-world test performance of a model trained on simulated data.
Traditional UDA often assumes that there are abundant unlabeled real-world data samples available during training for the adaptation.
We explore the one-shot unsupervised sim-to-real domain adaptation (OSUDA) and generalization problem, where only one real-world data sample is available.
arXiv Detail & Related papers (2022-12-14T15:54:15Z) - Synthetic-to-Real Domain Generalized Semantic Segmentation for 3D Indoor
Point Clouds [69.64240235315864]
This paper introduces the synthetic-to-real domain generalization setting to this task.
The domain gap between synthetic and real-world point cloud data mainly lies in the different layouts and point patterns.
Experiments on the synthetic-to-real benchmark demonstrate that both CINMix and multi-prototypes can narrow the distribution gap.
arXiv Detail & Related papers (2022-12-09T05:07:43Z) - 3DGazeNet: Generalizing Gaze Estimation with Weak-Supervision from
Synthetic Views [67.00931529296788]
We propose to train general gaze estimation models which can be directly employed in novel environments without adaptation.
We create a large-scale dataset of diverse faces with gaze pseudo-annotations, which we extract based on the 3D geometry of the scene.
We test our method in the task of gaze generalization, in which we demonstrate improvement of up to 30% compared to state-of-the-art when no ground truth data are available.
arXiv Detail & Related papers (2022-12-06T14:15:17Z) - Style-transfer GANs for bridging the domain gap in synthetic pose
estimator training [8.508403388002133]
We propose to adopt general-purpose GAN models for pixel-level image translation.
The obtained models are then used either during training or inference to bridge the domain gap.
Our evaluation shows a considerable improvement in model performance when compared to a model trained with the same degree of domain randomization.
arXiv Detail & Related papers (2020-04-28T17:35:03Z) - Unsupervised Intra-domain Adaptation for Semantic Segmentation through
Self-Supervision [73.76277367528657]
Convolutional neural network-based approaches have achieved remarkable progress in semantic segmentation.
To cope with this limitation, automatically annotated data generated from graphic engines are used to train segmentation models.
We propose a two-step self-supervised domain adaptation approach to minimize the inter-domain and intra-domain gap together.
arXiv Detail & Related papers (2020-04-16T15:24:11Z) - Focus on Semantic Consistency for Cross-domain Crowd Understanding [34.560447389853614]
Some domain adaptation algorithms try to liberate it by training models with synthetic data.
We found that a mass of estimation errors in the background areas impede the performance of the existing methods.
In this paper, we propose a domain adaptation method to eliminate it.
arXiv Detail & Related papers (2020-02-20T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.