Large Reconfigurable Quantum Circuits with SPAD Arrays and Multimode
Fibers
- URL: http://arxiv.org/abs/2305.16206v1
- Date: Thu, 25 May 2023 16:07:38 GMT
- Title: Large Reconfigurable Quantum Circuits with SPAD Arrays and Multimode
Fibers
- Authors: Adrian Makowski, Micha{\l} D\k{a}browski, Ivan Michel Antolovic,
Claudio Bruschini, Hugo Defienne, Edoardo Charbon, Radek Lapkiewicz, and
Sylvain Gigan
- Abstract summary: Integrated optics provides a natural platform for tunable photonic circuits, but faces challenges when high dimensions and high connectivity are involved.
Here, we implement high-dimensional linear transformations on spatial modes of photons using wavefront shaping together with mode mixing in a multimode fiber.
In order to prove the suitability of our approach for quantum technologies we demonstrate two-photon interferences in a tunable complex linear network.
- Score: 1.5992461683527883
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reprogrammable linear optical circuits are essential elements of photonic
quantum technology implementations. Integrated optics provides a natural
platform for tunable photonic circuits, but faces challenges when high
dimensions and high connectivity are involved. Here, we implement
high-dimensional linear transformations on spatial modes of photons using
wavefront shaping together with mode mixing in a multimode fiber, and measure
photon correlations using a time-tagging single-photon avalanche diode (SPAD)
array. In order to prove the suitability of our approach for quantum
technologies we demonstrate two-photon interferences in a tunable complex
linear network -- a generalization of a Hong-Ou-Mandel interference to 22
output ports. We study the scalability of our approach by quantifying the
similarity between the ideal photon correlations and the correlations obtained
experimentally for various linear transformations. Our results demonstrate the
potential of wavefront shaping in complex media in conjunction with SPAD arrays
for implementing high-dimensional reconfigurable quantum circuits.
Specifically, we achieved $(80.5 \pm 6.8)\%$ similarity for indistinguishable
photon pairs and $(84.9 \pm 7.0)\%$ similarity for distinguishable photon pairs
using 22 detectors and random circuits. These results emphasize the scalability
and reprogrammable nature of our approach.
Related papers
- Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED [41.94295877935867]
We design a passive conditional gate between co-propagating photons using an array of only two-level emitters.
The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes.
We show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings.
arXiv Detail & Related papers (2024-07-08T18:00:25Z) - Tunable generation of spatial entanglement in nonlinear waveguide arrays [0.0]
spatially entangled photon pairs based on parametric down-conversion in AlGaAs nonlinear waveguides arrays.
We use a double-pump configuration to engineer the output quantum state and implement various types of spatial correlations.
This demonstration, at room temperature and telecom wavelength, illustrates the potential of continuously-coupled systems.
arXiv Detail & Related papers (2024-05-13T20:55:54Z) - On-demand shaped photon emission based on a parametrically modulated qubit [14.88027830561737]
A single-rail and dual-rail time-bin shaped photon generator can act as a quantum interface of a point-to-point quantum network.
We develop an efficient photon field measurement setup based on the data stream processing of GPU.
The results demonstrate that our method is hardware efficient, simple to implement, and scalable.
arXiv Detail & Related papers (2024-05-02T16:53:54Z) - Shaping Single Photons through Multimode Optical Fibers using Mechanical
Perturbations [55.41644538483948]
We show an all-fiber approach for controlling the shape of single photons and the spatial correlations between entangled photon pairs.
We optimize these perturbations to localize the spatial distribution of a single photon or the spatial correlations of photon pairs in a single spot.
arXiv Detail & Related papers (2023-06-04T07:33:39Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Entangled ripples and twists of light: Radial and azimuthal
Laguerre-Gaussian mode entanglement [0.0]
We demonstrate the generation and certification of full-field Laguerre-Gaussian entanglement between photons pairs.
Our work demonstrates the potential offered by the full spatial structure of the two-photon field for enhancing technologies for quantum information processing and communication.
arXiv Detail & Related papers (2021-04-09T17:46:50Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Quantum photonics with active feedback loops [0.0]
We develop a unified theoretical framework for the efficient description of multiphoton states generated and propagating in loop-based optical networks.
We provide exact expressions for fidelities with target states, success probabilities of heralding-type measurements, and correlations between optical modes.
arXiv Detail & Related papers (2020-02-19T13:07:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.