論文の概要: UDPM: Upsampling Diffusion Probabilistic Models
- arxiv url: http://arxiv.org/abs/2305.16269v2
- Date: Mon, 27 May 2024 18:02:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 04:36:37.312654
- Title: UDPM: Upsampling Diffusion Probabilistic Models
- Title(参考訳): UDPM:拡散確率モデルの改善
- Authors: Shady Abu-Hussein, Raja Giryes,
- Abstract要約: 拡散確率モデル(DDPM、Denoising Diffusion Probabilistic Models)は近年注目されている。
DDPMは逆プロセスを定義することによって複雑なデータ分布から高品質なサンプルを生成する。
生成逆数ネットワーク(GAN)とは異なり、拡散モデルの潜伏空間は解釈できない。
本研究では,デノナイズ拡散過程をUDPM(Upsampling Diffusion Probabilistic Model)に一般化することを提案する。
- 参考スコア(独自算出の注目度): 33.51145642279836
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Denoising Diffusion Probabilistic Models (DDPM) have recently gained significant attention. DDPMs compose a Markovian process that begins in the data domain and gradually adds noise until reaching pure white noise. DDPMs generate high-quality samples from complex data distributions by defining an inverse process and training a deep neural network to learn this mapping. However, these models are inefficient because they require many diffusion steps to produce aesthetically pleasing samples. Additionally, unlike generative adversarial networks (GANs), the latent space of diffusion models is less interpretable. In this work, we propose to generalize the denoising diffusion process into an Upsampling Diffusion Probabilistic Model (UDPM). In the forward process, we reduce the latent variable dimension through downsampling, followed by the traditional noise perturbation. As a result, the reverse process gradually denoises and upsamples the latent variable to produce a sample from the data distribution. We formalize the Markovian diffusion processes of UDPM and demonstrate its generation capabilities on the popular FFHQ, AFHQv2, and CIFAR10 datasets. UDPM generates images with as few as three network evaluations, whose overall computational cost is less than a single DDPM or EDM step, while achieving an FID score of 6.86. This surpasses current state-of-the-art efficient diffusion models that use a single denoising step for sampling. Additionally, UDPM offers an interpretable and interpolable latent space, which gives it an advantage over traditional DDPMs. Our code is available online: \url{https://github.com/shadyabh/UDPM/}
- Abstract(参考訳): 拡散確率モデル(DDPM、Denoising Diffusion Probabilistic Models)は近年注目されている。
DDPMは、データ領域から始まり、純粋なホワイトノイズに到達するまで徐々にノイズを付加するマルコフ過程を構成する。
DDPMは、逆プロセスを定義し、このマッピングを学ぶためにディープニューラルネットワークをトレーニングすることで、複雑なデータ分布から高品質なサンプルを生成する。
しかし、これらのモデルは審美的なサンプルを生成するために多くの拡散ステップを必要とするため、非効率である。
さらに、GANとは違い、拡散モデルの潜伏空間は解釈しにくい。
本研究では,デノナイズ拡散過程をUDPM(Upsampling Diffusion Probabilistic Model)に一般化することを提案する。
前処理では、ダウンサンプリングにより潜時変動次元を減少させ、続いて従来のノイズ摂動を減少させる。
その結果、逆処理は、潜伏変数を徐々に軽視して、データ分布からサンプルを生成する。
我々はUDPMのマルコフ拡散過程を形式化し、その生成能力を一般的なFFHQ、AFHQv2、CIFAR10データセット上で実証する。
UDPMは最大3つのネットワーク評価で画像を生成するが、全体の計算コストはDDPMまたはEDMステップよりも低く、FIDスコアは6.86である。
これは、サンプリングに1つのデノナイジングステップを使用する、最先端の効率的な拡散モデルを上回る。
加えて、UDPMは解釈可能で補間可能な潜在空間を提供しており、従来のDDPMよりも有利である。
私たちのコードはオンラインで利用可能です。
関連論文リスト
- Boosting Diffusion Models with Moving Average Sampling in Frequency Domain [101.43824674873508]
拡散モデルは、現在のサンプルに頼って次のサンプルをノイズ化し、おそらく不安定化を引き起こす。
本稿では,反復的復調過程をモデル最適化として再解釈し,移動平均機構を利用して全ての先行サンプルをアンサンブルする。
周波数領域における平均サンプリング(MASF)の動作」という完全なアプローチを命名する。
論文 参考訳(メタデータ) (2024-03-26T16:57:55Z) - DPM-OT: A New Diffusion Probabilistic Model Based on Optimal Transport [26.713392774427653]
DPM-OTは高速DPMのための統合学習フレームワークであり、直接高速道路はOTマップで表される。
約10の関数評価で高品質なサンプルを生成することができる。
実験は、DPM-OTの有効性と利点を、速度と品質の観点から検証した。
論文 参考訳(メタデータ) (2023-07-21T02:28:54Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Denoising Diffusion Probabilistic Models (DDPM)のような既存のモデルは、高品質で多様なサンプルを提供するが、本質的に多くの反復的なステップによって遅くなる。
暗黙的要因と明示的要因を一致させることにより、この問題に対処する新しいアプローチを導入する。
提案手法は拡散モデルに匹敵する生成性能と,少数のサンプリングステップを持つモデルに比較して非常に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-21T18:49:22Z) - Fast Diffusion Probabilistic Model Sampling through the lens of Backward
Error Analysis [26.907301901503835]
拡散確率モデル (DDPM) は強力な生成モデルの一種である。
DDPMは通常、サンプルを生成するために数百から数千の連続関数評価(ステップ)を必要とする。
本稿では,高い試料品質を維持しつつ,ステップの少ないDDPMの高速サンプリング法を開発することを目的とする。
論文 参考訳(メタデータ) (2023-04-22T16:58:47Z) - Accelerating Diffusion Models via Early Stop of the Diffusion Process [114.48426684994179]
Denoising Diffusion Probabilistic Models (DDPM) は、様々な世代タスクにおいて優れたパフォーマンスを実現している。
実際には、DDPMは高品質なサンプルを得るために何十万ものデノナイジングステップを必要とすることが多い。
本稿では,DDPMの早期停止型DDPM(Early-Stopped DDPM, ES-DDPM)の原理的高速化戦略を提案する。
論文 参考訳(メタデータ) (2022-05-25T06:40:09Z) - Pseudo Numerical Methods for Diffusion Models on Manifolds [77.40343577960712]
Denoising Diffusion Probabilistic Models (DDPM) は、画像やオーディオサンプルなどの高品質なサンプルを生成することができる。
DDPMは最終的なサンプルを生成するために数百から数千のイテレーションを必要とする。
拡散モデル(PNDM)の擬似数値法を提案する。
PNDMは、1000段DDIM(20倍の高速化)と比較して、50段の精度で高品質な合成画像を生成することができる
論文 参考訳(メタデータ) (2022-02-20T10:37:52Z) - Truncated Diffusion Probabilistic Models and Diffusion-based Adversarial
Auto-Encoders [137.1060633388405]
拡散に基づく生成モデルは、逆拡散連鎖を推論してデータを生成する方法を学ぶ。
我々は、データが純粋なランダムノイズになるまで、より高速で安価にノイズを付加するアプローチを提案する。
提案手法は,拡散過程と学習可能な暗黙的前処理の両方によって付与された逆自動エンコーダとしてキャスト可能であることを示す。
論文 参考訳(メタデータ) (2022-02-19T20:18:49Z) - Improved Denoising Diffusion Probabilistic Models [4.919647298882951]
その結果,ddpmは高いサンプル品質を維持しつつ,競合的なログライク性を達成できることがわかった。
また,逆拡散過程の学習分散により,フォワードパスが桁違いに小さくサンプリングできることがわかった。
これらのモデルのサンプルの品質と可能性について,モデルのキャパシティとトレーニング計算でスムーズに拡張できることを示し,スケーラビリティを向上する。
論文 参考訳(メタデータ) (2021-02-18T23:44:17Z) - Denoising Diffusion Implicit Models [117.03720513930335]
DDPMと同様の訓練手順を施した反復的暗黙的確率モデルに対して,拡散暗黙モデル(DDIM)を提案する。
DDIMsは、DDPMsと比較して、壁面時間で10倍から50倍高速な高品質のサンプルを作成できる。
論文 参考訳(メタデータ) (2020-10-06T06:15:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。