論文の概要: Think Before You Act: Decision Transformers with Working Memory
- arxiv url: http://arxiv.org/abs/2305.16338v3
- Date: Tue, 28 May 2024 19:03:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 11:43:58.616524
- Title: Think Before You Act: Decision Transformers with Working Memory
- Title(参考訳): 行動する前に考える: ワーキングメモリを備えた決定変換器
- Authors: Jikun Kang, Romain Laroche, Xingdi Yuan, Adam Trischler, Xue Liu, Jie Fu,
- Abstract要約: 決定変換器に基づく意思決定エージェントは、複数のタスクにまたがる一般化能力を示している。
この非効率性は、モデルがトレーニングを通してパラメータの振る舞いを記憶する忘れ現象に起因していると我々は主張する。
ダウンストリームタスクの情報を格納、ブレンド、検索するためのワーキングメモリモジュールを提案する。
- 参考スコア(独自算出の注目度): 44.18926449252084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decision Transformer-based decision-making agents have shown the ability to generalize across multiple tasks. However, their performance relies on massive data and computation. We argue that this inefficiency stems from the forgetting phenomenon, in which a model memorizes its behaviors in parameters throughout training. As a result, training on a new task may deteriorate the model's performance on previous tasks. In contrast to LLMs' implicit memory mechanism, the human brain utilizes distributed memory storage, which helps manage and organize multiple skills efficiently, mitigating the forgetting phenomenon. Inspired by this, we propose a working memory module to store, blend, and retrieve information for different downstream tasks. Evaluation results show that the proposed method improves training efficiency and generalization in Atari games and Meta-World object manipulation tasks. Moreover, we demonstrate that memory fine-tuning further enhances the adaptability of the proposed architecture.
- Abstract(参考訳): 決定変換器に基づく意思決定エージェントは、複数のタスクにまたがる一般化能力を示している。
しかし、その性能は大量のデータと計算に依存している。
この非効率性は、モデルがトレーニングを通してパラメータの振る舞いを記憶する忘れ現象に起因していると我々は主張する。
結果として、新しいタスクに対するトレーニングは、以前のタスクに対するモデルの性能を低下させる可能性がある。
LLMの暗黙記憶機構とは対照的に、人間の脳は分散メモリストレージを利用して複数のスキルを効率的に管理し、整理し、忘れる現象を緩和する。
そこで本研究では,ダウンストリームタスクの情報を格納,ブレンド,検索するためのワーキングメモリモジュールを提案する。
評価の結果,提案手法は,AtariゲームやMeta-Worldオブジェクト操作タスクにおけるトレーニング効率と一般化を改善していることがわかった。
さらに,メモリの微調整により,提案アーキテクチャの適応性はさらに向上することを示す。
関連論文リスト
- Stable Hadamard Memory: Revitalizing Memory-Augmented Agents for Reinforcement Learning [64.93848182403116]
現在のディープラーニングメモリモデルは、部分的に観察可能で長期にわたる強化学習環境で苦労している。
本稿では,強化学習エージェントのための新しい記憶モデルであるStable Hadamard Memoryを紹介する。
我々の手法は、部分的に観測可能なベンチマークに挑戦する上で、最先端のメモリベースの手法よりも大幅に優れています。
論文 参考訳(メタデータ) (2024-10-14T03:50:17Z) - Parameter-Efficient and Memory-Efficient Tuning for Vision Transformer: A Disentangled Approach [87.8330887605381]
本稿では,学習可能なパラメータをわずかに限定して,事前学習した視覚変換器を下流認識タスクに適用する方法を示す。
学習可能で軽量なモジュールを用いてタスク固有のクエリを合成する。
本手法はメモリ制約下での最先端性能を実現し,実環境における適用性を示す。
論文 参考訳(メタデータ) (2024-07-09T15:45:04Z) - PARMESAN: Parameter-Free Memory Search and Transduction for Dense Prediction Tasks [5.5127111704068374]
この研究は、トランスダクティブ推論によるディープラーニングの柔軟性に対処する。
我々は,高密度予測タスクを解くためにメモリモジュールを活用するスケーラブルな手法であるPARMESANを提案する。
提案手法は,一般的なアーキテクチャと互換性があり,標準で1D,2D,3Dグリッドベースのデータに転送する。
論文 参考訳(メタデータ) (2024-03-18T12:55:40Z) - Spatially-Aware Transformer for Embodied Agents [20.498778205143477]
本稿では,空間情報を含む空間認識変換器モデルの利用について検討する。
メモリ利用効率が向上し,様々な場所中心の下流タスクにおいて精度が向上することが実証された。
また,強化学習に基づくメモリ管理手法であるAdaptive Memory Allocatorを提案する。
論文 参考訳(メタデータ) (2024-02-23T07:46:30Z) - Recurrent Action Transformer with Memory [39.58317527488534]
本稿では,情報保持を規制するリカレントメモリ機構を組み込んだ新しいモデルアーキテクチャを提案する。
メモリ集約環境(ViZDoom-Two-Colors, T-Maze, Memory Maze, Minigrid-Memory)、古典的アタリゲーム、MuJoCo制御環境について実験を行った。
その結果、メモリの使用は、古典的な環境における結果の維持や改善をしながら、メモリ集約環境におけるパフォーマンスを著しく向上させることができることがわかった。
論文 参考訳(メタデータ) (2023-06-15T19:29:08Z) - A Memory Model for Question Answering from Streaming Data Supported by
Rehearsal and Anticipation of Coreference Information [19.559853775982386]
本稿では,ストリーミングデータから質問応答タスクを解くための重要な情報に入力を処理しながら,リハーサルと予測を行うメモリモデルを提案する。
我々は,bAbIデータセットと大規模テキスト(Narrative QA)およびビデオ(ActivityNet-QA)質問応答データセットを用いて,我々のモデルを検証した。
論文 参考訳(メタデータ) (2023-05-12T15:46:36Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
本研究では,モデルが学習する時間とともに,新しいデータクラスが観察される学習環境であるクラスインクリメンタルラーニングについて検討する。
素直な問題定式化にもかかわらず、クラス増分学習への分類モデルの素直な適用は、これまで見られたクラスの「破滅的な忘れ込み」をもたらす。
これは、過去のデータのサブセットをメモリバンクに保存し、将来のタスクをトレーニングする際の忘れの防止にそれを活用することで、破滅的な忘れの問題を克服するものだ。
論文 参考訳(メタデータ) (2022-10-10T08:27:28Z) - A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental
Learning [56.450090618578]
CIL(Class-Incremental Learning)は、この要件を満たすために、限られたメモリサイズでモデルをトレーニングすることを目的としている。
モデルサイズを総予算にカウントし,メモリサイズに整合する手法を比較すると,保存モデルは常に機能しないことを示す。
本稿では,メモリ効率のよい拡張可能なMOdelのための MEMO という,シンプルで効果的なベースラインを提案する。
論文 参考訳(メタデータ) (2022-05-26T08:24:01Z) - Learning to Learn Variational Semantic Memory [132.39737669936125]
我々はメタラーニングに変分セマンティックメモリを導入し、数ショットラーニングのための長期的知識を得る。
セマンティックメモリはスクラッチから成長し、経験したタスクから情報を吸収することで徐々に統合される。
アドレスコンテンツから潜在記憶変数の変動推論としてメモリリコールを定式化する。
論文 参考訳(メタデータ) (2020-10-20T15:05:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。