GrowSP: Unsupervised Semantic Segmentation of 3D Point Clouds
- URL: http://arxiv.org/abs/2305.16404v1
- Date: Thu, 25 May 2023 18:11:21 GMT
- Title: GrowSP: Unsupervised Semantic Segmentation of 3D Point Clouds
- Authors: Zihui Zhang, Bo Yang, Bing Wang, Bo Li
- Abstract summary: We propose the first purely unsupervised method, called GrowSP, to successfully identify complex semantic classes for every point in 3D scenes.
Our method consists of three major components, 1) the feature extractor to learn per-point features from input point clouds, 2) the superpoint constructor to progressively grow the sizes of superpoints, and 3) the semantic primitive clustering module to group superpoints into semantic elements.
We extensively evaluate our method on multiple datasets, demonstrating superior performance over all unsupervised baselines and approaching the classic fully-supervised PointNet.
- Score: 12.597717463575478
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of 3D semantic segmentation from raw point clouds.
Unlike existing methods which primarily rely on a large amount of human
annotations for training neural networks, we propose the first purely
unsupervised method, called GrowSP, to successfully identify complex semantic
classes for every point in 3D scenes, without needing any type of human labels
or pretrained models. The key to our approach is to discover 3D semantic
elements via progressive growing of superpoints. Our method consists of three
major components, 1) the feature extractor to learn per-point features from
input point clouds, 2) the superpoint constructor to progressively grow the
sizes of superpoints, and 3) the semantic primitive clustering module to group
superpoints into semantic elements for the final semantic segmentation. We
extensively evaluate our method on multiple datasets, demonstrating superior
performance over all unsupervised baselines and approaching the classic
fully-supervised PointNet. We hope our work could inspire more advanced methods
for unsupervised 3D semantic learning.
Related papers
- PointDC:Unsupervised Semantic Segmentation of 3D Point Clouds via
Cross-modal Distillation and Super-Voxel Clustering [32.18716273358168]
We take the first attempt for fully unsupervised semantic segmentation of point clouds.
We propose a novel framework, PointDC, comprised of two steps that handle the aforementioned problems.
PointDC yields a significant improvement over the prior state-of-the-art unsupervised methods.
arXiv Detail & Related papers (2023-04-18T12:58:21Z) - PartSLIP: Low-Shot Part Segmentation for 3D Point Clouds via Pretrained
Image-Language Models [56.324516906160234]
Generalizable 3D part segmentation is important but challenging in vision and robotics.
This paper explores an alternative way for low-shot part segmentation of 3D point clouds by leveraging a pretrained image-language model, GLIP.
We transfer the rich knowledge from 2D to 3D through GLIP-based part detection on point cloud rendering and a novel 2D-to-3D label lifting algorithm.
arXiv Detail & Related papers (2022-12-03T06:59:01Z) - Learning Inter-Superpoint Affinity for Weakly Supervised 3D Instance
Segmentation [10.968271388503986]
We propose a 3D instance segmentation framework that can achieve good performance by annotating only one point for each instance.
Our method achieves state-of-the-art performance in the weakly supervised point cloud instance segmentation task, and even outperforms some fully supervised methods.
arXiv Detail & Related papers (2022-10-11T15:22:22Z) - Box2Seg: Learning Semantics of 3D Point Clouds with Box-Level
Supervision [65.19589997822155]
We introduce a neural architecture, termed Box2Seg, to learn point-level semantics of 3D point clouds with bounding box-level supervision.
We show that the proposed network can be trained with cheap, or even off-the-shelf bounding box-level annotations and subcloud-level tags.
arXiv Detail & Related papers (2022-01-09T09:07:48Z) - Point Discriminative Learning for Unsupervised Representation Learning
on 3D Point Clouds [54.31515001741987]
We propose a point discriminative learning method for unsupervised representation learning on 3D point clouds.
We achieve this by imposing a novel point discrimination loss on the middle level and global level point features.
Our method learns powerful representations and achieves new state-of-the-art performance.
arXiv Detail & Related papers (2021-08-04T15:11:48Z) - Dense Supervision Propagation for Weakly Supervised Semantic Segmentation on 3D Point Clouds [59.63231842439687]
We train a semantic point cloud segmentation network with only a small portion of points being labeled.
We propose a cross-sample feature reallocating module to transfer similar features and therefore re-route the gradients across two samples.
Our weakly supervised method with only 10% and 1% of labels can produce compatible results with the fully supervised counterpart.
arXiv Detail & Related papers (2021-07-23T14:34:57Z) - SCSS-Net: Superpoint Constrained Semi-supervised Segmentation Network
for 3D Indoor Scenes [6.3364439467281315]
We propose a superpoint constrained semi-supervised segmentation network for 3D point clouds, named as SCSS-Net.
Specifically, we use the pseudo labels predicted from unlabeled point clouds for self-training, and the superpoints produced by geometry-based and color-based Region Growing algorithms are combined to modify and delete pseudo labels with low confidence.
arXiv Detail & Related papers (2021-07-08T04:43:21Z) - SSPC-Net: Semi-supervised Semantic 3D Point Cloud Segmentation Network [21.818744369503197]
We propose a semi-supervised semantic point cloud segmentation network, named SSPC-Net.
We train the semantic segmentation network by inferring the labels of unlabeled points from the few annotated 3D points.
Our method can achieve better performance than the current semi-supervised segmentation method with fewer annotated 3D points.
arXiv Detail & Related papers (2021-04-16T02:37:27Z) - Few-shot 3D Point Cloud Semantic Segmentation [138.80825169240302]
We propose a novel attention-aware multi-prototype transductive few-shot point cloud semantic segmentation method.
Our proposed method shows significant and consistent improvements compared to baselines in different few-shot point cloud semantic segmentation settings.
arXiv Detail & Related papers (2020-06-22T08:05:25Z) - Multi-Path Region Mining For Weakly Supervised 3D Semantic Segmentation
on Point Clouds [67.0904905172941]
We propose a weakly supervised approach to predict point-level results using weak labels on 3D point clouds.
To the best of our knowledge, this is the first method that uses cloud-level weak labels on raw 3D space to train a point cloud semantic segmentation network.
arXiv Detail & Related papers (2020-03-29T14:13:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.