LogoSP: Local-global Grouping of Superpoints for Unsupervised Semantic Segmentation of 3D Point Clouds
- URL: http://arxiv.org/abs/2506.07857v1
- Date: Mon, 09 Jun 2025 15:21:37 GMT
- Title: LogoSP: Local-global Grouping of Superpoints for Unsupervised Semantic Segmentation of 3D Point Clouds
- Authors: Zihui Zhang, Weisheng Dai, Hongtao Wen, Bo Yang,
- Abstract summary: We introduce LogoSP to learn 3D semantics from both local and global point features.<n>Our approach is to discover 3D semantic information by grouping superpoints according to their global patterns in the frequency domain.
- Score: 5.636411923613415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of unsupervised 3D semantic segmentation on raw point clouds without needing human labels in training. Existing methods usually formulate this problem into learning per-point local features followed by a simple grouping strategy, lacking the ability to discover additional and possibly richer semantic priors beyond local features. In this paper, we introduce LogoSP to learn 3D semantics from both local and global point features. The key to our approach is to discover 3D semantic information by grouping superpoints according to their global patterns in the frequency domain, thus generating highly accurate semantic pseudo-labels for training a segmentation network. Extensive experiments on two indoor and an outdoor datasets show that our LogoSP surpasses all existing unsupervised methods by large margins, achieving the state-of-the-art performance for unsupervised 3D semantic segmentation. Notably, our investigation into the learned global patterns reveals that they truly represent meaningful 3D semantics in the absence of human labels during training.
Related papers
- Bayesian Self-Training for Semi-Supervised 3D Segmentation [59.544558398992386]
3D segmentation is a core problem in computer vision.
densely labeling 3D point clouds to employ fully-supervised training remains too labor intensive and expensive.
Semi-supervised training provides a more practical alternative, where only a small set of labeled data is given, accompanied by a larger unlabeled set.
arXiv Detail & Related papers (2024-09-12T14:54:31Z) - GrowSP: Unsupervised Semantic Segmentation of 3D Point Clouds [12.597717463575478]
We propose the first purely unsupervised method, called GrowSP, to successfully identify complex semantic classes for every point in 3D scenes.
Our method consists of three major components, 1) the feature extractor to learn per-point features from input point clouds, 2) the superpoint constructor to progressively grow the sizes of superpoints, and 3) the semantic primitive clustering module to group superpoints into semantic elements.
We extensively evaluate our method on multiple datasets, demonstrating superior performance over all unsupervised baselines and approaching the classic fully-supervised PointNet.
arXiv Detail & Related papers (2023-05-25T18:11:21Z) - Box2Seg: Learning Semantics of 3D Point Clouds with Box-Level
Supervision [65.19589997822155]
We introduce a neural architecture, termed Box2Seg, to learn point-level semantics of 3D point clouds with bounding box-level supervision.
We show that the proposed network can be trained with cheap, or even off-the-shelf bounding box-level annotations and subcloud-level tags.
arXiv Detail & Related papers (2022-01-09T09:07:48Z) - Point Discriminative Learning for Unsupervised Representation Learning
on 3D Point Clouds [54.31515001741987]
We propose a point discriminative learning method for unsupervised representation learning on 3D point clouds.
We achieve this by imposing a novel point discrimination loss on the middle level and global level point features.
Our method learns powerful representations and achieves new state-of-the-art performance.
arXiv Detail & Related papers (2021-08-04T15:11:48Z) - Dense Supervision Propagation for Weakly Supervised Semantic Segmentation on 3D Point Clouds [59.63231842439687]
We train a semantic point cloud segmentation network with only a small portion of points being labeled.
We propose a cross-sample feature reallocating module to transfer similar features and therefore re-route the gradients across two samples.
Our weakly supervised method with only 10% and 1% of labels can produce compatible results with the fully supervised counterpart.
arXiv Detail & Related papers (2021-07-23T14:34:57Z) - 3D Spatial Recognition without Spatially Labeled 3D [127.6254240158249]
We introduce WyPR, a Weakly-supervised framework for Point cloud Recognition.
We show that WyPR can detect and segment objects in point cloud data without access to any spatial labels at training time.
arXiv Detail & Related papers (2021-05-13T17:58:07Z) - Weakly Supervised Semantic Segmentation in 3D Graph-Structured Point
Clouds of Wild Scenes [36.07733308424772]
The deficiency of 3D segmentation labels is one of the main obstacles to effective point cloud segmentation.
We propose a novel deep graph convolutional network-based framework for large-scale semantic scene segmentation in point clouds with sole 2D supervision.
arXiv Detail & Related papers (2020-04-26T23:02:23Z) - Multi-Path Region Mining For Weakly Supervised 3D Semantic Segmentation
on Point Clouds [67.0904905172941]
We propose a weakly supervised approach to predict point-level results using weak labels on 3D point clouds.
To the best of our knowledge, this is the first method that uses cloud-level weak labels on raw 3D space to train a point cloud semantic segmentation network.
arXiv Detail & Related papers (2020-03-29T14:13:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.