ZeroAvatar: Zero-shot 3D Avatar Generation from a Single Image
- URL: http://arxiv.org/abs/2305.16411v1
- Date: Thu, 25 May 2023 18:23:20 GMT
- Title: ZeroAvatar: Zero-shot 3D Avatar Generation from a Single Image
- Authors: Zhenzhen Weng, Zeyu Wang, Serena Yeung
- Abstract summary: We present ZeroAvatar, a method that introduces the explicit 3D human body prior to the optimization process.
We show that ZeroAvatar significantly enhances the robustness and 3D consistency of optimization-based image-to-3D avatar generation.
- Score: 17.285152757066527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in text-to-image generation have enabled significant
progress in zero-shot 3D shape generation. This is achieved by score
distillation, a methodology that uses pre-trained text-to-image diffusion
models to optimize the parameters of a 3D neural presentation, e.g. Neural
Radiance Field (NeRF). While showing promising results, existing methods are
often not able to preserve the geometry of complex shapes, such as human
bodies. To address this challenge, we present ZeroAvatar, a method that
introduces the explicit 3D human body prior to the optimization process.
Specifically, we first estimate and refine the parameters of a parametric human
body from a single image. Then during optimization, we use the posed parametric
body as additional geometry constraint to regularize the diffusion model as
well as the underlying density field. Lastly, we propose a UV-guided texture
regularization term to further guide the completion of texture on invisible
body parts. We show that ZeroAvatar significantly enhances the robustness and
3D consistency of optimization-based image-to-3D avatar generation,
outperforming existing zero-shot image-to-3D methods.
Related papers
- FAMOUS: High-Fidelity Monocular 3D Human Digitization Using View Synthesis [51.193297565630886]
The challenge of accurately inferring texture remains, particularly in obscured areas such as the back of a person in frontal-view images.
This limitation in texture prediction largely stems from the scarcity of large-scale and diverse 3D datasets.
We propose leveraging extensive 2D fashion datasets to enhance both texture and shape prediction in 3D human digitization.
arXiv Detail & Related papers (2024-10-13T01:25:05Z) - Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
3D object generation from a single image involves estimating the full 3D geometry and texture of unseen views from an unposed RGB image captured in the wild.
Recent advancements in 3D object generation have introduced techniques that reconstruct an object's 3D shape and texture.
We propose bridging the gap between 2D and 3D diffusion models to address this limitation.
arXiv Detail & Related papers (2024-10-12T10:14:11Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
We present a diffusion model approach based on Gaussian Splatting representation for 3D object reconstruction from a single view.
The model learns to generate 3D objects represented by sets of GS ellipsoids.
The final reconstructed objects explicitly come with high-quality 3D structure and texture, and can be efficiently rendered in arbitrary views.
arXiv Detail & Related papers (2024-07-05T03:43:08Z) - HumanRef: Single Image to 3D Human Generation via Reference-Guided
Diffusion [53.1558345421646]
We propose HumanRef, a 3D human generation framework from a single-view input.
To ensure the generated 3D model is photorealistic and consistent with the input image, HumanRef introduces a novel method called reference-guided score distillation sampling.
Experimental results demonstrate that HumanRef outperforms state-of-the-art methods in generating 3D clothed humans.
arXiv Detail & Related papers (2023-11-28T17:06:28Z) - Articulated 3D Head Avatar Generation using Text-to-Image Diffusion
Models [107.84324544272481]
The ability to generate diverse 3D articulated head avatars is vital to a plethora of applications, including augmented reality, cinematography, and education.
Recent work on text-guided 3D object generation has shown great promise in addressing these needs.
We show that our diffusion-based articulated head avatars outperform state-of-the-art approaches for this task.
arXiv Detail & Related papers (2023-07-10T19:15:32Z) - One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape
Optimization [30.951405623906258]
Single image 3D reconstruction is an important but challenging task that requires extensive knowledge of our natural world.
We propose a novel method that takes a single image of any object as input and generates a full 360-degree 3D textured mesh in a single feed-forward pass.
arXiv Detail & Related papers (2023-06-29T13:28:16Z) - Dream3D: Zero-Shot Text-to-3D Synthesis Using 3D Shape Prior and
Text-to-Image Diffusion Models [44.34479731617561]
We introduce explicit 3D shape priors into the CLIP-guided 3D optimization process.
We present a simple yet effective approach that directly bridges the text and image modalities with a powerful text-to-image diffusion model.
Our method, Dream3D, is capable of generating imaginative 3D content with superior visual quality and shape accuracy.
arXiv Detail & Related papers (2022-12-28T18:23:47Z) - DreamFusion: Text-to-3D using 2D Diffusion [52.52529213936283]
Recent breakthroughs in text-to-image synthesis have been driven by diffusion models trained on billions of image-text pairs.
In this work, we circumvent these limitations by using a pretrained 2D text-to-image diffusion model to perform text-to-3D synthesis.
Our approach requires no 3D training data and no modifications to the image diffusion model, demonstrating the effectiveness of pretrained image diffusion models as priors.
arXiv Detail & Related papers (2022-09-29T17:50:40Z) - Learned Vertex Descent: A New Direction for 3D Human Model Fitting [64.04726230507258]
We propose a novel optimization-based paradigm for 3D human model fitting on images and scans.
Our approach is able to capture the underlying body of clothed people with very different body shapes, achieving a significant improvement compared to state-of-the-art.
LVD is also applicable to 3D model fitting of humans and hands, for which we show a significant improvement to the SOTA with a much simpler and faster method.
arXiv Detail & Related papers (2022-05-12T17:55:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.