論文の概要: NLP Reproducibility For All: Understanding Experiences of Beginners
- arxiv url: http://arxiv.org/abs/2305.16579v2
- Date: Wed, 31 May 2023 20:47:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 21:25:51.997162
- Title: NLP Reproducibility For All: Understanding Experiences of Beginners
- Title(参考訳): NLPのすべての再現性:初心者の経験を理解する
- Authors: Shane Storks, Keunwoo Peter Yu, Ziqiao Ma, Joyce Chai
- Abstract要約: 導入NLP講習会で93名の学生を対象に調査を行い,最近のNLP論文の結果を再現した。
プログラムのスキルと研究論文の理解が,演習の完了に費やした労力に限られた影響を与えていることがわかった。
我々は,NLP研究者が研究成果をオープンソース化する上で,これらのシンプルな側面に細心の注意を払うことを推奨する。
- 参考スコア(独自算出の注目度): 6.190897257068862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As natural language processing (NLP) has recently seen an unprecedented level
of excitement, and more people are eager to enter the field, it is unclear
whether current research reproducibility efforts are sufficient for this group
of beginners to apply the latest developments. To understand their needs, we
conducted a study with 93 students in an introductory NLP course, where
students reproduced the results of recent NLP papers. Surprisingly, we find
that their programming skill and comprehension of research papers have a
limited impact on their effort spent completing the exercise. Instead, we find
accessibility efforts by research authors to be the key to success, including
complete documentation, better coding practice, and easier access to data
files. Going forward, we recommend that NLP researchers pay close attention to
these simple aspects of open-sourcing their work, and use insights from
beginners' feedback to provide actionable ideas on how to better support them.
- Abstract(参考訳): 自然言語処理 (NLP) は近年, 前例のないほど興奮感を呈しており, この分野への参入を熱望する人々が増えていることから, 初心者グループにとって最新の研究成果が有効かどうかは不明である。
本研究は,最近のNLP論文の成果を再現した入門NLPコースにおいて,93名の学生を対象に調査を行った。
驚いたことに、彼らのプログラミングスキルと研究論文の理解は、エクササイズを完了するのに費やした努力に限定的な影響を与えている。
その代わり、完全なドキュメンテーション、より良いコーディングプラクティス、データファイルへのアクセスの容易化など、研究者によるアクセシビリティの取り組みが成功の鍵となることが分かっています。
今後は、NLP研究者がこれらの簡単な側面に注意を払って作業をオープンソース化し、初心者のフィードバックからの洞察を使って、より優れたサポート方法に関する実用的なアイデアを提供することを推奨する。
関連論文リスト
- O1 Replication Journey: A Strategic Progress Report -- Part 1 [52.062216849476776]
本稿では,O1 Replication Journeyに具体化された人工知能研究の先駆的アプローチを紹介する。
我々の方法論は、長期化したチームベースのプロジェクトの不規則性を含む、現代のAI研究における重要な課題に対処する。
本稿では,モデルにショートカットだけでなく,完全な探索プロセスの学習を促す旅行学習パラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-08T15:13:01Z) - The Nature of NLP: Analyzing Contributions in NLP Papers [77.31665252336157]
我々は,NLP研究を構成するものについて,研究論文から定量的に検討する。
以上の結果から,NLPにおける機械学習の関与は,90年代前半から増加傾向にあることが明らかとなった。
2020年以降、言語と人々への関心が復活した。
論文 参考訳(メタデータ) (2024-09-29T01:29:28Z) - What Can Natural Language Processing Do for Peer Review? [173.8912784451817]
現代の科学ではピアレビューが広く使われているが、それは難しく、時間がかかり、エラーを起こしやすい。
ピアレビューに関わるアーティファクトは大部分がテキストベースであるため、自然言語処理はレビューを改善する大きな可能性を秘めている。
筆者らは、原稿提出からカメラ対応リビジョンまでの各工程について詳述し、NLP支援の課題と機会について論じる。
論文 参考訳(メタデータ) (2024-05-10T16:06:43Z) - A Survey on Deep Active Learning: Recent Advances and New Frontiers [27.07154361976248]
この研究は、ディープラーニングに基づくアクティブラーニング(DAL)の難しさを克服する上で、研究者にとって有用かつ迅速なガイドとなることを目的としている。
この手法は適用可能性の広さから人気が高まりつつあるが、特にディープラーニングに基づくアクティブラーニング(DAL)に関する調査論文は乏しいままである。
論文 参考訳(メタデータ) (2024-05-01T05:54:33Z) - Beyond Good Intentions: Reporting the Research Landscape of NLP for
Social Good [115.1507728564964]
NLP4SG Papersは3つのタスクを関連づけた科学データセットである。
これらのタスクはNLP4SGの論文を特定し、NLP4SGのランドスケープを特徴付けるのに役立つ。
現状のNLPモデルを用いてこれらのタスクに対処し、ACLアンソロジー全体においてそれらを使用する。
論文 参考訳(メタデータ) (2023-05-09T14:16:25Z) - NLPeer: A Unified Resource for the Computational Study of Peer Review [58.71736531356398]
NLPeer - 5万以上の論文と5つの異なる会場からの1万1千件のレビューレポートからなる、初めて倫理的にソースされたマルチドメインコーパス。
従来のピアレビューデータセットを拡張し、解析および構造化された論文表現、豊富なメタデータ、バージョニング情報を含む。
我々の研究は、NLPなどにおけるピアレビューの体系的、多面的、エビデンスに基づく研究への道のりをたどっている。
論文 参考訳(メタデータ) (2022-11-12T12:29:38Z) - Reproducibility Beyond the Research Community: Experience from NLP
Beginners [6.957948096979098]
我々は,最近のNLP論文の成果を再現した入門NLP講座で,93名の学生を対象に調査を行った。
意外なことに、我々の結果は、彼らの技術スキル(つまりプログラミングの経験)が、演習の完了に費やした労力に限られた影響を与えていることを示唆している。
私たちは、研究著者によるアクセシビリティの取り組みが、詳細なドキュメントや必要なモデルやデータセットへのアクセスなど、成功した経験の鍵になることに気付きました。
論文 参考訳(メタデータ) (2022-05-04T16:54:00Z) - Meta Learning for Natural Language Processing: A Survey [88.58260839196019]
ディープラーニングは自然言語処理(NLP)分野において主要な技術である。
ディープラーニングには多くのラベル付きデータが必要です。
メタ学習は、より良いアルゴリズムを学ぶためのアプローチを研究する機械学習の分野である。
論文 参考訳(メタデータ) (2022-05-03T13:58:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。