LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large
Language Models
- URL: http://arxiv.org/abs/2212.04088v3
- Date: Thu, 30 Mar 2023 04:50:44 GMT
- Title: LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large
Language Models
- Authors: Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M. Sadler, Wei-Lun
Chao, Yu Su
- Abstract summary: This study focuses on using large language models (LLMs) as a planner for embodied agents.
We propose a novel method, LLM-Planner, that harnesses the power of large language models to do few-shot planning.
- Score: 27.318186938382233
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study focuses on using large language models (LLMs) as a planner for
embodied agents that can follow natural language instructions to complete
complex tasks in a visually-perceived environment. The high data cost and poor
sample efficiency of existing methods hinders the development of versatile
agents that are capable of many tasks and can learn new tasks quickly. In this
work, we propose a novel method, LLM-Planner, that harnesses the power of large
language models to do few-shot planning for embodied agents. We further propose
a simple but effective way to enhance LLMs with physical grounding to generate
and update plans that are grounded in the current environment. Experiments on
the ALFRED dataset show that our method can achieve very competitive few-shot
performance: Despite using less than 0.5% of paired training data, LLM-Planner
achieves competitive performance with recent baselines that are trained using
the full training data. Existing methods can barely complete any task
successfully under the same few-shot setting. Our work opens the door for
developing versatile and sample-efficient embodied agents that can quickly
learn many tasks. Website: https://dki-lab.github.io/LLM-Planner
Related papers
- Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
We introduce a novel framework for enhancing large language models' (LLMs) planning capabilities by using planning data derived from knowledge graphs (KGs)
LLMs fine-tuned with KG data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval.
arXiv Detail & Related papers (2024-06-20T13:07:38Z) - MetaGPT: Merging Large Language Models Using Model Exclusive Task Arithmetic [6.46176287368784]
We propose textbfModel textbfExclusive textbfTask textbfArithmetic for merging textbfGPT-scale models.
Our proposed MetaGPT is data-agnostic and bypasses the heavy search process, making it cost-effective and easy to implement for LLMs.
arXiv Detail & Related papers (2024-06-17T10:12:45Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Sub-goal Distillation: A Method to Improve Small Language Agents [21.815417165548187]
Large Language Models (LLMs) have demonstrated significant promise as agents in interactive tasks.
We propose a method for transferring the performance of an LLM with billions of parameters to a much smaller language model.
In ScienceWorld, a challenging and multi-task interactive text environment, our method surpasses standard imitation learning based solely on elementary actions by 16.7%.
arXiv Detail & Related papers (2024-05-04T20:34:06Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
Open-source pre-trained Large Language Models (LLMs) exhibit strong language understanding and generation capabilities.
When used as agents for dealing with complex problems in the real world, their performance is far inferior to large commercial models such as ChatGPT and GPT-4.
arXiv Detail & Related papers (2024-03-29T03:48:12Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - Dynamic Planning with a LLM [15.430182858130884]
Large Language Models (LLMs) can solve many NLP tasks in zero-shot settings, but applications involving embodied agents remain problematic.
Our work presents LLM Dynamic Planner (LLM-DP), a neuro-symbolic framework where an LLM works hand-in-hand with a traditional planner to solve an embodied task.
arXiv Detail & Related papers (2023-08-11T21:17:13Z) - AdaPlanner: Adaptive Planning from Feedback with Language Models [56.367020818139665]
Large language models (LLMs) have recently demonstrated the potential in acting as autonomous agents for sequential decision-making tasks.
We propose a closed-loop approach, AdaPlanner, which allows the LLM agent to refine its self-generated plan adaptively in response to environmental feedback.
To mitigate hallucination, we develop a code-style LLM prompt structure that facilitates plan generation across a variety of tasks, environments, and agent capabilities.
arXiv Detail & Related papers (2023-05-26T05:52:27Z) - Plan, Eliminate, and Track -- Language Models are Good Teachers for
Embodied Agents [99.17668730578586]
Pre-trained large language models (LLMs) capture procedural knowledge about the world.
Plan, Eliminate, and Track (PET) framework translates a task description into a list of high-level sub-tasks.
PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.
arXiv Detail & Related papers (2023-05-03T20:11:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.