論文の概要: Act Like a Radiologist: Radiology Report Generation across Anatomical Regions
- arxiv url: http://arxiv.org/abs/2305.16685v2
- Date: Thu, 10 Oct 2024 10:53:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-11 14:28:33.688200
- Title: Act Like a Radiologist: Radiology Report Generation across Anatomical Regions
- Title(参考訳): 放射線科医としての行為 : 解剖学的領域にまたがる放射線学報告
- Authors: Qi Chen, Yutong Xie, Biao Wu, Xiaomin Chen, James Ang, Minh-Son To, Xiaojun Chang, Qi Wu,
- Abstract要約: X-RGenは6つの解剖学的領域にわたる放射線学者によるレポート生成フレームワークである。
X-RGenでは、ヒトの放射線学者の行動を模倣し、これらを4つの主要な段階に分解する。
画像エンコーダの認識能力は,各領域にまたがる画像やレポートを分析して向上する。
- 参考スコア(独自算出の注目度): 50.13206214694885
- License:
- Abstract: Automating radiology report generation can ease the reporting workload for radiologists. However, existing works focus mainly on the chest area due to the limited availability of public datasets for other regions. Besides, they often rely on naive data-driven approaches, e.g., a basic encoder-decoder framework with captioning loss, which limits their ability to recognise complex patterns across diverse anatomical regions. To address these issues, we propose X-RGen, a radiologist-minded report generation framework across six anatomical regions. In X-RGen, we seek to mimic the behaviour of human radiologists, breaking them down into four principal phases: 1) initial observation, 2) cross-region analysis, 3) medical interpretation, and 4) report formation. Firstly, we adopt an image encoder for feature extraction, akin to a radiologist's preliminary review. Secondly, we enhance the recognition capacity of the image encoder by analysing images and reports across various regions, mimicking how radiologists gain their experience and improve their professional ability from past cases. Thirdly, just as radiologists apply their expertise to interpret radiology images, we introduce radiological knowledge of multiple anatomical regions to further analyse the features from a clinical perspective. Lastly, we generate reports based on the medical-aware features using a typical auto-regressive text decoder. Both natural language generation (NLG) and clinical efficacy metrics show the effectiveness of X-RGen on six X-ray datasets. Our code and checkpoints are available at: https://github.com/YtongXie/X-RGen.
- Abstract(参考訳): 放射線学レポート生成の自動化は、放射線学者の報告作業の負担を軽減することができる。
しかし、既存の研究は、他地域の公開データセットが限られているため、胸部を中心に活動している。
さらに、単純なデータ駆動アプローチ、例えばキャプション損失を伴う基本的なエンコーダ/デコーダフレームワークにも依存することが多いため、さまざまな解剖学的領域にわたる複雑なパターンの認識が制限される。
これらの課題に対処するために,6つの解剖学的領域にまたがるX-RGenを提案する。
X-RGenでは、人間の放射線学者の行動を模倣し、これらを4つの主要な段階に分割する。
1)最初の観察。
2)地域横断分析
3【医学的解釈】
4) 報告書作成。
まず,画像エンコーダを用いて特徴抽出を行う。
次に, 画像エンコーダの認識能力を向上させるために, 各種領域の画像を解析し, 放射線科医が過去の事例からどのように経験を得て, 職業能力を向上させるかを模擬した。
第3に, 放射線医が放射線画像の解釈にその専門知識を応用するのと同じように, 複数の解剖学的領域の放射線学的知識を導入し, その特徴を臨床的観点から分析する。
最後に、典型的な自動回帰テキストデコーダを用いて、医療認識機能に基づいたレポートを生成する。
自然言語生成(NLG)と臨床効果指標の両方が、6つのX線データセットに対するX-RGenの有効性を示している。
私たちのコードとチェックポイントは、https://github.com/YtongXie/X-RGen.comで利用可能です。
関連論文リスト
- Decoding Radiologists' Intentions: A Novel System for Accurate Region Identification in Chest X-ray Image Analysis [2.207061125661163]
胸部X線(CXR)画像解析では、放射線技師は様々な領域を慎重に観察し、レポートにその観察を記録している。
CXR診断における誤りの頻度、特に経験の浅い放射線科医や病院の住民は、放射線科医の意図とそれに伴う関心領域を理解することの重要性を強調している。
本報告では, 放射線技師がCXR画像に対する関心領域について, 主観的意図を識別するシステムを提案する。
論文 参考訳(メタデータ) (2024-04-29T15:18:26Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuerは、一般化可能な表現を学習する自動放射線学レポート生成のための調整されたモデルである。
本研究で利用した臨床データセットは,textbf332,673の顕著な総計を含む。
ChatRadio-Valuerは、最先端のモデル、特にChatGPT(GPT-3.5-Turbo)やGPT-4などより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-08T17:23:17Z) - I-AI: A Controllable & Interpretable AI System for Decoding
Radiologists' Intense Focus for Accurate CXR Diagnoses [9.260958560874812]
解釈可能な人工知能(I-AI)は、新しく統一された制御可能な解釈可能なパイプラインである。
私たちのI-AIは、放射線科医がどこに見えるか、特定の領域にどのくらい焦点を合わせるか、どの発見を診断するか、という3つの重要な疑問に対処しています。
論文 参考訳(メタデータ) (2023-09-24T04:48:44Z) - Generation of Radiology Findings in Chest X-Ray by Leveraging
Collaborative Knowledge [6.792487817626456]
医学的イメージを解釈する認知的タスクは、放射線学のワークフローにおいて最も重要であり、しばしば時間を要するステップである。
この研究は、ほとんどの時間をFindingsの執筆またはナレーションに費やしている放射線学者の作業量を削減することに焦点を当てている。
単段階画像キャプションタスクとして放射線学レポートを生成する過去の研究とは異なり、CXR画像の解釈の複雑さを考慮に入れている。
論文 参考訳(メタデータ) (2023-06-18T00:51:28Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
我々は,会話型医療ビジョン言語モデルであるXrayGPTを紹介する。
胸部X線写真に関するオープンエンドの質問を分析し、答えることができる。
自由テキストラジオグラフィーレポートから217kの対話的かつ高品質な要約を生成する。
論文 参考訳(メタデータ) (2023-06-13T17:59:59Z) - Self adaptive global-local feature enhancement for radiology report
generation [10.958641951927817]
グローバル・解剖学的領域の特徴を動的に融合して多粒性放射線学レポートを生成する新しいフレームワーク AGFNet を提案する。
まず,入力胸部X線(CXR)の解剖学的特徴と大域的特徴を抽出する。
そして,領域の特徴とグローバルな特徴を入力として,提案した自己適応型核融合ゲートモジュールは動的に多粒性情報を融合することができる。
最後に、キャプション生成装置は、多粒性特徴により放射線学レポートを生成する。
論文 参考訳(メタデータ) (2022-11-21T11:50:42Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - XraySyn: Realistic View Synthesis From a Single Radiograph Through CT
Priors [118.27130593216096]
放射線写真は、X線を用いて患者の内部解剖を視覚化し、3D情報を2次元平面に投影する。
私たちの知る限りでは、ラジオグラフィビューの合成に関する最初の研究である。
本手法は,3次元空間におけるX線撮影の理解を得ることにより,地中骨ラベルを使わずに,X線撮影による骨抽出と骨抑制に応用できることが示唆された。
論文 参考訳(メタデータ) (2020-12-04T05:08:53Z) - XRayGAN: Consistency-preserving Generation of X-ray Images from
Radiology Reports [19.360283053558604]
我々は,X線画像から高精細・高精細・高精細・高精細なX線画像を生成する手法を開発した。
この研究は、放射線学報告から一貫した高解像度のX線画像を生成する最初のものである。
論文 参考訳(メタデータ) (2020-06-17T05:32:14Z) - Auxiliary Signal-Guided Knowledge Encoder-Decoder for Medical Report
Generation [107.3538598876467]
放射線技師の動作パターンを模倣する補助信号誘導知識デコーダ(ASGK)を提案する。
ASGKは、内的特徴融合と外部医療言語情報を統合して、医療知識の伝達と学習をガイドする。
論文 参考訳(メタデータ) (2020-06-06T01:00:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。