A Novel real-time arrhythmia detection model using YOLOv8
- URL: http://arxiv.org/abs/2305.16727v3
- Date: Mon, 8 Jan 2024 02:26:12 GMT
- Title: A Novel real-time arrhythmia detection model using YOLOv8
- Authors: Guang Jun Nicholas Ang, Aritejh Kr Goil, Henryk Chan, Jieyi Jeric Lew,
Xin Chun Lee, Raihan Bin Ahmad Mustaffa, Timotius Jason, Ze Ting Woon and
Bingquan Shen
- Abstract summary: This study underscores the feasibility of employing electrocardiograms (ECG) measurements in the home environment for real-time arrhythmia detection.
We introduce a novel loss-modified YOLOv8 model, fine-tuned on the MIT-BIH arrhythmia dataset, enabling real-time continuous monitoring.
Our investigation exemplifies the potential of real-time arrhythmia detection, enabling users to visually interpret the model output within the comfort of their homes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In a landscape characterized by heightened connectivity and mobility, coupled
with a surge in cardiovascular ailments, the imperative to curtail healthcare
expenses through remote monitoring of cardiovascular health has become more
pronounced. The accurate detection and classification of cardiac arrhythmias
are pivotal for diagnosing individuals with heart irregularities. This study
underscores the feasibility of employing electrocardiograms (ECG) measurements
in the home environment for real-time arrhythmia detection. Presenting a fresh
application for arrhythmia detection, this paper leverages the cutting-edge
You-Only-Look-Once (YOLO)v8 algorithm to categorize single-lead ECG signals. We
introduce a novel loss-modified YOLOv8 model, fine-tuned on the MIT-BIH
arrhythmia dataset, enabling real-time continuous monitoring. The obtained
results substantiate the efficacy of our approach, with the model attaining an
average accuracy of 99.5% and 0.992 mAP@50, and a rapid detection time of 0.002
seconds on an NVIDIA Tesla V100. Our investigation exemplifies the potential of
real-time arrhythmia detection, enabling users to visually interpret the model
output within the comfort of their homes. Furthermore, this study lays the
groundwork for an extension into a real-time explainable AI (XAI) model capable
of deployment in the healthcare sector, thereby significantly advancing the
realm of healthcare solutions.
Related papers
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - ECG-SMART-NET: A Deep Learning Architecture for Precise ECG Diagnosis of Occlusion Myocardial Infarction [1.7894680263068135]
We describe ECG--NET for identification of myocardial infarction (OMI)
OMI is a severe form of heart attack characterized by complete blockage of one or more coronary arteries.
Two thirds of OMI cases are difficult to visually identify from a 12-lead electrocardiogram.
arXiv Detail & Related papers (2024-05-08T19:59:16Z) - A Compact LSTM-SVM Fusion Model for Long-Duration Cardiovascular
Diseases Detection [0.0]
Globally, cardiovascular diseases (CVDs) are the leading cause of mortality, accounting for an estimated 17.9 million deaths annually.
One critical clinical objective is the early detection of CVDs using electrocardiogram (ECG) data.
Recent advancements based on machine learning and deep learning have achieved great progress in this domain.
arXiv Detail & Related papers (2023-11-20T10:57:11Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
We introduce a novel method, Geodesic-BP, to solve the inverse eikonal problem.
We show that Geodesic-BP can reconstruct a simulated cardiac activation with high accuracy in a synthetic test case.
Given the future shift towards personalized medicine, Geodesic-BP has the potential to help in future functionalizations of cardiac models.
arXiv Detail & Related papers (2023-08-16T14:57:12Z) - Machine Learning-based Signal Quality Assessment for Cardiac Volume
Monitoring in Electrical Impedance Tomography [0.8541111605978491]
In clinical applications, a cardiac volume signal is often of low quality, mainly because of the patient's deliberate movements or inevitable motions during clinical interventions.
This study aims to develop a signal quality indexing method that assesses the influence of motion artifacts on transient cardiac volume signals.
The proposed method can be utilized to provide immediate warnings so that clinicians can minimize confusion regarding patients' conditions.
arXiv Detail & Related papers (2023-01-04T07:13:21Z) - A lightweight hybrid CNN-LSTM model for ECG-based arrhythmia detection [0.0]
This paper introduces a light deep learning approach for high accuracy detection of 8 different cardiac arrhythmias and normal rhythm.
A trained model for arrhythmia classification using diverse ECG signals were successfully developed and tested.
arXiv Detail & Related papers (2022-08-29T05:01:04Z) - Estimation of atrial fibrillation from lead-I ECGs: Comparison with
cardiologists and machine learning model (CurAlive), a clinical validation
study [0.0]
This study presents a method to detect atrial fibrillation with lead-I ECGs using artificial intelligence.
The aim of the study is to compare the accuracy of the diagnoses estimated by cardiologists and artificial intelligence over lead-I ECGs.
arXiv Detail & Related papers (2021-04-15T12:50:16Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.