論文の概要: CNN Feature Map Augmentation for Single-Source Domain Generalization
- arxiv url: http://arxiv.org/abs/2305.16746v3
- Date: Mon, 4 Dec 2023 09:52:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-05 23:17:33.013583
- Title: CNN Feature Map Augmentation for Single-Source Domain Generalization
- Title(参考訳): 単一ソース領域一般化のためのCNN特徴マップの拡張
- Authors: Aristotelis Ballas and Christos Diou
- Abstract要約: ドメイン・ジェネリゼーション(DG)はここ数年で大きな注目を集めている。
DGの目標は、トレーニング中に利用可能なものと異なるデータ分散を提示した場合、引き続き正常に機能するモデルを作成することだ。
単一ソースDG画像分類設定における畳み込みニューラルネットワークアーキテクチャの代替正則化手法を提案する。
- 参考スコア(独自算出の注目度): 6.053629733936548
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In search of robust and generalizable machine learning models, Domain
Generalization (DG) has gained significant traction during the past few years.
The goal in DG is to produce models which continue to perform well when
presented with data distributions different from the ones available during
training. While deep convolutional neural networks (CNN) have been able to
achieve outstanding performance on downstream computer vision tasks, they still
often fail to generalize on previously unseen data Domains. Therefore, in this
work we focus on producing a model which is able to remain robust under data
distribution shift and propose an alternative regularization technique for
convolutional neural network architectures in the single-source DG image
classification setting. To mitigate the problem caused by domain shift between
source and target data, we propose augmenting intermediate feature maps of
CNNs. Specifically, we pass them through a novel Augmentation Layer} to prevent
models from overfitting on the training set and improve their cross-domain
generalization. To the best of our knowledge, this is the first paper proposing
such a setup for the DG image classification setting. Experiments on the DG
benchmark datasets of PACS, VLCS, Office-Home and TerraIncognita validate the
effectiveness of our method, in which our model surpasses state-of-the-art
algorithms in most cases.
- Abstract(参考訳): 堅牢で一般化可能な機械学習モデルを探す中で、ドメイン一般化(DG)はここ数年で大きな注目を集めている。
DGの目標は、トレーニング中に利用可能なものと異なるデータ分散を提示した場合、引き続き正常に機能するモデルを作成することだ。
深層畳み込みニューラルネットワーク(CNN)は、下流のコンピュータビジョンタスクで優れたパフォーマンスを達成できたが、これまで見つからなかったデータドメインの一般化に失敗することが多い。
そこで本研究では,データ分散シフト時においても頑健なモデルを作成することに注力し,単一ソースdg画像分類における畳み込みニューラルネットワークアーキテクチャのための代替正規化手法を提案する。
ソースとターゲットデータ間のドメインシフトによる問題を軽減するため、cnnの中間特徴マップの強化を提案する。
具体的には、モデルをトレーニングセットにオーバーフィットさせ、ドメイン間の一般化を改善するために、新しい拡張層を通過させます。
我々の知る限りでは、DG画像分類設定にそのような設定を提案する最初の論文である。
PACS,VLCS,Office-Home,TerraIncognitaのDGベンチマークデータセットを用いた実験により,本手法の有効性が検証された。
関連論文リスト
- DG-TTA: Out-of-domain medical image segmentation through Domain Generalization and Test-Time Adaptation [43.842694540544194]
本稿では、ドメインの一般化とテスト時間適応を組み合わせることで、未確認対象領域で事前学習したモデルを再利用するための非常に効果的なアプローチを提案する。
本手法は,事前訓練した全身CTモデルと組み合わせることで,MR画像を高精度に分割できることを実証する。
論文 参考訳(メタデータ) (2023-12-11T10:26:21Z) - Open-Set Domain Adaptation with Visual-Language Foundation Models [51.49854335102149]
非教師なしドメイン適応(UDA)は、ソースドメインからラベルのないデータを持つターゲットドメインへの知識の転送に非常に効果的であることが証明されている。
オープンセットドメイン適応(ODA)は、トレーニングフェーズ中にこれらのクラスを識別する潜在的なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-07-30T11:38:46Z) - Single Domain Generalization via Normalised Cross-correlation Based
Convolutions [14.306250516592304]
単一ドメインの一般化は、単一のソースからのデータを使用して堅牢なモデルをトレーニングすることを目的としている。
本稿では、重みと入力特徴パッチの間の正規化相互相関を計算するXCNormという演算子を提案する。
この演算子で構成されるディープニューラルネットワークは、一般的な意味分布シフトに対して堅牢であることを示す。
論文 参考訳(メタデータ) (2023-07-12T04:15:36Z) - Domain Adaptive and Generalizable Network Architectures and Training
Strategies for Semantic Image Segmentation [108.33885637197614]
教師なしドメイン適応(UDA)とドメイン一般化(DG)により、ソースドメインでトレーニングされた機械学習モデルは、ラベルなしまたは目に見えないターゲットドメインでうまく機能する。
UDA&DGのマルチレゾリューション・フレームワークであるHRDAを提案する。このフレームワークは、細かなセグメンテーションの詳細を保存するための小さな高分解能作物の強度と、学習されたスケールの注意を伴って長距離のコンテキスト依存を捕捉する大規模な低分解能作物の強度を組み合わせたものである。
論文 参考訳(メタデータ) (2023-04-26T15:18:45Z) - Learning to Augment via Implicit Differentiation for Domain
Generalization [107.9666735637355]
ドメイン一般化(DG)は、複数のソースドメインを活用してドメイン一般化可能なモデルを学ぶことで、この問題を克服することを目的としている。
本稿では,AugLearnと呼ばれる新しい拡張型DG手法を提案する。
AugLearnは、PACS、Office-Home、Digits-DGの3つの標準DGベンチマークで効果を示す。
論文 参考訳(メタデータ) (2022-10-25T18:51:51Z) - AADG: Automatic Augmentation for Domain Generalization on Retinal Image
Segmentation [1.0452185327816181]
AADG(Automated Augmentation for Domain Generalization)と呼ばれるデータ操作に基づくドメイン一般化手法を提案する。
我々のAADGフレームワークは、新しいドメインを生成するデータ拡張ポリシーを効果的にサンプリングすることができる。
提案するAADGは,最先端の一般化性能を示し,既存手法より優れている。
論文 参考訳(メタデータ) (2022-07-27T02:26:01Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
そこで本研究では,ターゲットドメインとソースがクラスを共有しない顔認識タスクを対象とした,クラスタリングに基づく新しいドメイン適応手法を提案する。
本手法は,特徴領域をグローバルに整列させ,その一方で,対象クラスタを局所的に識別することで,識別対象特徴を効果的に学習する。
論文 参考訳(メタデータ) (2022-05-27T12:29:11Z) - Reappraising Domain Generalization in Neural Networks [8.06370138649329]
機械学習アルゴリズムのドメイン一般化(DG)は、複数のトレーニング分布からドメインに依存しない仮説を学習する能力として定義される。
経験的リスク最小化(ERM)ベースラインは,既存のDG手法を一貫して上回っていることがわかった。
そこで我々は,各クラスに対してランダムにドメインを選択して,それをテスト用として保持する,クラスワイズDGの定式化を提案する。
論文 参考訳(メタデータ) (2021-10-15T10:06:40Z) - Robust Domain-Free Domain Generalization with Class-aware Alignment [4.442096198968069]
ドメインフリードメイン一般化(DFDG)は、目に見えないテストドメインでより良い一般化性能を実現するモデル非依存の方法である。
DFDGは新しい戦略を用いてドメイン不変なクラス差別的特徴を学習する。
時系列センサと画像分類公開データセットの両方で競合性能を得る。
論文 参考訳(メタデータ) (2021-02-17T17:46:06Z) - Learning to Generate Novel Domains for Domain Generalization [115.21519842245752]
本稿では,未知の領域によく一般化するモデルとして,複数のソースドメインから学習するタスクに焦点を当てる。
我々は、擬似ノーベル領域からデータを合成し、ソースドメインを増強するためにデータジェネレータを用いる。
我々の手法であるL2A-OTは、4つのベンチマークデータセット上で現在最先端のDG手法より優れています。
論文 参考訳(メタデータ) (2020-07-07T09:34:17Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
領域適応法は、2つの領域間の分布がシフトし、それを認識しようとすると仮定する。
グラフ埋め込みに基づく汎用フレームワークを提案する。
提案手法が強力なドメイン適応フレームワークにつながることを示す。
論文 参考訳(メタデータ) (2020-03-09T12:25:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。