Negative-prompt Inversion: Fast Image Inversion for Editing with Text-guided Diffusion Models
- URL: http://arxiv.org/abs/2305.16807v2
- Date: Tue, 10 Dec 2024 14:52:10 GMT
- Title: Negative-prompt Inversion: Fast Image Inversion for Editing with Text-guided Diffusion Models
- Authors: Daiki Miyake, Akihiro Iohara, Yu Saito, Toshiyuki Tanaka,
- Abstract summary: We propose negative-prompt inversion, a method capable of achieving equivalent reconstruction solely through forward propagation without optimization.
We experimentally demonstrate that the reconstruction fidelity of our method is comparable to that of existing methods, allowing for inversion at a resolution of 512 pixels.
- Score: 1.9392139016731575
- License:
- Abstract: In image editing employing diffusion models, it is crucial to preserve the reconstruction fidelity to the original image while changing its style. Although existing methods ensure reconstruction fidelity through optimization, a drawback of these is the significant amount of time required for optimization. In this paper, we propose negative-prompt inversion, a method capable of achieving equivalent reconstruction solely through forward propagation without optimization, thereby enabling ultrafast editing processes. We experimentally demonstrate that the reconstruction fidelity of our method is comparable to that of existing methods, allowing for inversion at a resolution of 512 pixels and with 50 sampling steps within approximately 5 seconds, which is more than 30 times faster than null-text inversion. Reduction of the computation time by the proposed method further allows us to use a larger number of sampling steps in diffusion models to improve the reconstruction fidelity with a moderate increase in computation time.
Related papers
- Frequency-Guided Posterior Sampling for Diffusion-Based Image Restoration [32.50204554102937]
We propose a simple modification to existing diffusion-based restoration methods.
Our approach introduces a time-varying low-pass filter in the frequency domain of the measurements.
We develop an adaptive curriculum for this frequency schedule based on the underlying data distribution.
arXiv Detail & Related papers (2024-11-22T18:31:02Z) - Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
Diffusion models have dominated the field of large, generative image models.
We propose an algorithm for fast-constrained sampling in large pre-trained diffusion models.
arXiv Detail & Related papers (2024-10-24T14:52:38Z) - ERDDCI: Exact Reversible Diffusion via Dual-Chain Inversion for High-Quality Image Editing [20.46262679357339]
Diffusion models (DMs) have been successfully applied to real image editing.
Recent popular DMs often rely on the assumption of local linearization.
ERDDCI uses the new Dual-Chain Inversion (DCI) for joint inference to derive an exact reversible diffusion process.
arXiv Detail & Related papers (2024-10-18T07:52:03Z) - Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
We design an effective diffusion transformer for image super-resolution (DiT-SR)
In practice, DiT-SR leverages an overall U-shaped architecture, and adopts a uniform isotropic design for all the transformer blocks.
We analyze the limitation of the widely used AdaLN, and present a frequency-adaptive time-step conditioning module.
arXiv Detail & Related papers (2024-09-29T07:14:16Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - LASPA: Latent Spatial Alignment for Fast Training-free Single Image Editing [43.20273464866661]
We present a training-free approach for textual editing of real images using diffusion models.
We demonstrate how the diffusion process is amenable to spatial guidance using a reference image, leading to semantically coherent edits.
Our method achieves 62-71% preference in a user-study and significantly better model-based editing strength and image preservation scores.
arXiv Detail & Related papers (2024-03-19T09:47:08Z) - Efficient Diffusion Model for Image Restoration by Residual Shifting [63.02725947015132]
This study proposes a novel and efficient diffusion model for image restoration.
Our method avoids the need for post-acceleration during inference, thereby avoiding the associated performance deterioration.
Our method achieves superior or comparable performance to current state-of-the-art methods on three classical IR tasks.
arXiv Detail & Related papers (2024-03-12T05:06:07Z) - AdaDiff: Adaptive Step Selection for Fast Diffusion Models [82.78899138400435]
We introduce AdaDiff, a lightweight framework designed to learn instance-specific step usage policies.
AdaDiff is optimized using a policy method to maximize a carefully designed reward function.
We conduct experiments on three image generation and two video generation benchmarks and demonstrate that our approach achieves similar visual quality compared to the baseline.
arXiv Detail & Related papers (2023-11-24T11:20:38Z) - Effective Real Image Editing with Accelerated Iterative Diffusion
Inversion [6.335245465042035]
It is still challenging to edit and manipulate natural images with modern generative models.
Existing approaches that have tackled the problem of inversion stability often incur in significant trade-offs in computational efficiency.
We propose an Accelerated Iterative Diffusion Inversion method, dubbed AIDI, that significantly improves reconstruction accuracy with minimal additional overhead in space and time complexity.
arXiv Detail & Related papers (2023-09-10T01:23:05Z) - ResShift: Efficient Diffusion Model for Image Super-resolution by
Residual Shifting [70.83632337581034]
Diffusion-based image super-resolution (SR) methods are mainly limited by the low inference speed.
We propose a novel and efficient diffusion model for SR that significantly reduces the number of diffusion steps.
Our method constructs a Markov chain that transfers between the high-resolution image and the low-resolution image by shifting the residual.
arXiv Detail & Related papers (2023-07-23T15:10:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.