Universal approximation with complex-valued deep narrow neural networks
- URL: http://arxiv.org/abs/2305.16910v2
- Date: Mon, 29 May 2023 08:20:47 GMT
- Title: Universal approximation with complex-valued deep narrow neural networks
- Authors: Paul Geuchen, Thomas Jahn, Hannes Matt
- Abstract summary: We show that deep narrow complex-valued networks are universal if and only if their activation function is neither holomorphic, nor antiholomorphic, nor $mathbbR$-affine.
We prove, however, that a width of $n+m+4$ suffices for a rich subclass of the admissible activation functions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the universality of complex-valued neural networks with bounded
widths and arbitrary depths. Under mild assumptions, we give a full description
of those activation functions $\varrho:\mathbb{C}\to \mathbb{C}$ that have the
property that their associated networks are universal, i.e., are capable of
approximating continuous functions to arbitrary accuracy on compact domains.
Precisely, we show that deep narrow complex-valued networks are universal if
and only if their activation function is neither holomorphic, nor
antiholomorphic, nor $\mathbb{R}$-affine. This is a much larger class of
functions than in the dual setting of arbitrary width and fixed depth. Unlike
in the real case, the sufficient width differs significantly depending on the
considered activation function. We show that a width of $2n+2m+5$ is always
sufficient and that in general a width of $\max\{2n,2m\}$ is necessary. We
prove, however, that a width of $n+m+4$ suffices for a rich subclass of the
admissible activation functions. Here, $n$ and $m$ denote the input and output
dimensions of the considered networks.
Related papers
- Tractability of approximation by general shallow networks [0.0]
We consider approximation of functions of the form $ xmapstoint_mathbbY G( x, y)dtau( y)$, $ xinmathbbX$, by $G$-networks of the form $ xmapsto sum_k=1n a_kG( x, y_k)$.
We obtain independent dimension bounds on the degree of approximation in terms of $n$, where also the constants involved are all dependent on the dimensions.
arXiv Detail & Related papers (2023-08-07T00:14:46Z) - Polynomial Width is Sufficient for Set Representation with
High-dimensional Features [69.65698500919869]
DeepSets is the most widely used neural network architecture for set representation.
We present two set-element embedding layers: (a) linear + power activation (LP) and (b) linear + exponential activations (LE)
arXiv Detail & Related papers (2023-07-08T16:00:59Z) - The Onset of Variance-Limited Behavior for Networks in the Lazy and Rich
Regimes [75.59720049837459]
We study the transition from infinite-width behavior to this variance limited regime as a function of sample size $P$ and network width $N$.
We find that finite-size effects can become relevant for very small datasets on the order of $P* sim sqrtN$ for regression with ReLU networks.
arXiv Detail & Related papers (2022-12-23T04:48:04Z) - Minimal Width for Universal Property of Deep RNN [6.744583770038476]
A recurrent neural network (RNN) is a widely used deep-learning network for dealing with sequential data.
We prove the universality of deep narrow RNNs and show that the upper bound of the minimum width for universality can be independent of the length of the data.
arXiv Detail & Related papers (2022-11-25T02:43:54Z) - Achieve the Minimum Width of Neural Networks for Universal Approximation [1.52292571922932]
We study the exact minimum width, $w_min$, for the universal approximation property (UAP) of neural networks.
In particular, the critical width, $w*_min$, for $Lp$-UAP can be achieved by leaky-ReLU networks.
arXiv Detail & Related papers (2022-09-23T04:03:50Z) - Size and Depth Separation in Approximating Natural Functions with Neural
Networks [52.73592689730044]
We show the benefits of size and depth for approximation of natural functions with ReLU networks.
We show a complexity-theoretic barrier to proving such results beyond size $O(d)$.
We also show an explicit natural function, that can be approximated with networks of size $O(d)$.
arXiv Detail & Related papers (2021-01-30T21:30:11Z) - The universal approximation theorem for complex-valued neural networks [0.0]
We generalize the classical universal approximation for neural networks to the case of complex-valued neural networks.
We consider feedforward networks with a complex activation function $sigma : mathbbC to mathbbC$ in which each neuron performs the operation $mathbbCN to mathbbC, z mapsto sigma(b + wT z)$ with weights $w in mathbbCN$ and a bias $b in math
arXiv Detail & Related papers (2020-12-06T18:51:10Z) - A deep network construction that adapts to intrinsic dimensionality
beyond the domain [79.23797234241471]
We study the approximation of two-layer compositions $f(x) = g(phi(x))$ via deep networks with ReLU activation.
We focus on two intuitive and practically relevant choices for $phi$: the projection onto a low-dimensional embedded submanifold and a distance to a collection of low-dimensional sets.
arXiv Detail & Related papers (2020-08-06T09:50:29Z) - Minimum Width for Universal Approximation [91.02689252671291]
We prove that the minimum width required for the universal approximation of the $Lp$ functions is exactly $maxd_x+1,d_y$.
We also prove that the same conclusion does not hold for the uniform approximation with ReLU, but does hold with an additional threshold activation function.
arXiv Detail & Related papers (2020-06-16T01:24:21Z) - On the Modularity of Hypernetworks [103.1147622394852]
We show that for a structured target function, the overall number of trainable parameters in a hypernetwork is smaller by orders of magnitude than the number of trainable parameters of a standard neural network and an embedding method.
arXiv Detail & Related papers (2020-02-23T22:51:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.