New advances in universal approximation with neural networks of minimal width
- URL: http://arxiv.org/abs/2411.08735v2
- Date: Sat, 16 Nov 2024 12:51:03 GMT
- Title: New advances in universal approximation with neural networks of minimal width
- Authors: Dennis Rochau, Robin Chan, Hanno Gottschalk,
- Abstract summary: We show that autoencoders with leaky ReLU activations are universal approximators of $Lp$ functions.
We broaden our results to show that smooth invertible neural networks can approximate $Lp(mathbbRd,mathbbRd)$ on compacta.
- Score: 4.424170214926035
- License:
- Abstract: Deep neural networks have achieved remarkable success in diverse applications, prompting the need for a solid theoretical foundation. Recent research has identified the minimal width $\max\{2,d_x,d_y\}$ required for neural networks with input dimensions $d_x$ and output dimension $d_y$ that use leaky ReLU activations to universally approximate $L^p(\mathbb{R}^{d_x},\mathbb{R}^{d_y})$ on compacta. Here, we present an alternative proof for the minimal width of such neural networks, by directly constructing approximating networks using a coding scheme that leverages the properties of leaky ReLUs and standard $L^p$ results. The obtained construction has a minimal interior dimension of $1$, independent of input and output dimensions, which allows us to show that autoencoders with leaky ReLU activations are universal approximators of $L^p$ functions. Furthermore, we demonstrate that the normalizing flow LU-Net serves as a distributional universal approximator. We broaden our results to show that smooth invertible neural networks can approximate $L^p(\mathbb{R}^{d},\mathbb{R}^{d})$ on compacta when the dimension $d\geq 2$, which provides a constructive proof of a classical theorem of Brenier and Gangbo. In addition, we use a topological argument to establish that for FNNs with monotone Lipschitz continuous activations, $d_x+1$ is a lower bound on the minimal width required for the uniform universal approximation of continuous functions $C^0(\mathbb{R}^{d_x},\mathbb{R}^{d_y})$ on compacta when $d_x\geq d_y$.
Related papers
- Deep Neural Networks: Multi-Classification and Universal Approximation [0.0]
We demonstrate that a ReLU deep neural network with a width of $2$ and a depth of $2N+4M-1$ layers can achieve finite sample memorization for any dataset comprising $N$ elements.
We also provide depth estimates for approximating $W1,p$ functions and width estimates for approximating $Lp(Omega;mathbbRm)$ for $mgeq1$.
arXiv Detail & Related papers (2024-09-10T14:31:21Z) - Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
We study the problem of gradient descent learning of a single-index target function $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$ under isotropic Gaussian data.
We prove that a two-layer neural network optimized by an SGD-based algorithm learns $f_*$ of arbitrary link function with a sample and runtime complexity of $n asymp T asymp C(q) cdot d
arXiv Detail & Related papers (2024-06-03T17:56:58Z) - Learning Hierarchical Polynomials with Three-Layer Neural Networks [56.71223169861528]
We study the problem of learning hierarchical functions over the standard Gaussian distribution with three-layer neural networks.
For a large subclass of degree $k$s $p$, a three-layer neural network trained via layerwise gradientp descent on the square loss learns the target $h$ up to vanishing test error.
This work demonstrates the ability of three-layer neural networks to learn complex features and as a result, learn a broad class of hierarchical functions.
arXiv Detail & Related papers (2023-11-23T02:19:32Z) - Polynomial Width is Sufficient for Set Representation with
High-dimensional Features [69.65698500919869]
DeepSets is the most widely used neural network architecture for set representation.
We present two set-element embedding layers: (a) linear + power activation (LP) and (b) linear + exponential activations (LE)
arXiv Detail & Related papers (2023-07-08T16:00:59Z) - Effective Minkowski Dimension of Deep Nonparametric Regression: Function
Approximation and Statistical Theories [70.90012822736988]
Existing theories on deep nonparametric regression have shown that when the input data lie on a low-dimensional manifold, deep neural networks can adapt to intrinsic data structures.
This paper introduces a relaxed assumption that input data are concentrated around a subset of $mathbbRd$ denoted by $mathcalS$, and the intrinsic dimension $mathcalS$ can be characterized by a new complexity notation -- effective Minkowski dimension.
arXiv Detail & Related papers (2023-06-26T17:13:31Z) - Minimum Width of Leaky-ReLU Neural Networks for Uniform Universal
Approximation [10.249623880822055]
This paper examines a uniform UAP for the function class $C(K,mathbbRd_y)$.
It gives the exact minimum width of the leaky-ReLU NN as $w_min=max(d_x,d_y)+Delta (d_x, d_y)$.
arXiv Detail & Related papers (2023-05-29T06:51:16Z) - Minimal Width for Universal Property of Deep RNN [6.744583770038476]
A recurrent neural network (RNN) is a widely used deep-learning network for dealing with sequential data.
We prove the universality of deep narrow RNNs and show that the upper bound of the minimum width for universality can be independent of the length of the data.
arXiv Detail & Related papers (2022-11-25T02:43:54Z) - Achieve the Minimum Width of Neural Networks for Universal Approximation [1.52292571922932]
We study the exact minimum width, $w_min$, for the universal approximation property (UAP) of neural networks.
In particular, the critical width, $w*_min$, for $Lp$-UAP can be achieved by leaky-ReLU networks.
arXiv Detail & Related papers (2022-09-23T04:03:50Z) - Neural Network Approximation of Continuous Functions in High Dimensions
with Applications to Inverse Problems [6.84380898679299]
Current theory predicts that networks should scale exponentially in the dimension of the problem.
We provide a general method for bounding the complexity required for a neural network to approximate a H"older (or uniformly) continuous function.
arXiv Detail & Related papers (2022-08-28T22:44:07Z) - Minimax Optimal Quantization of Linear Models: Information-Theoretic
Limits and Efficient Algorithms [59.724977092582535]
We consider the problem of quantizing a linear model learned from measurements.
We derive an information-theoretic lower bound for the minimax risk under this setting.
We show that our method and upper-bounds can be extended for two-layer ReLU neural networks.
arXiv Detail & Related papers (2022-02-23T02:39:04Z) - Minimum Width for Universal Approximation [91.02689252671291]
We prove that the minimum width required for the universal approximation of the $Lp$ functions is exactly $maxd_x+1,d_y$.
We also prove that the same conclusion does not hold for the uniform approximation with ReLU, but does hold with an additional threshold activation function.
arXiv Detail & Related papers (2020-06-16T01:24:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.