論文の概要: Federated Learning for Semantic Parsing: Task Formulation, Evaluation
Setup, New Algorithms
- arxiv url: http://arxiv.org/abs/2305.17221v1
- Date: Fri, 26 May 2023 19:25:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-30 21:14:45.557999
- Title: Federated Learning for Semantic Parsing: Task Formulation, Evaluation
Setup, New Algorithms
- Title(参考訳): 意味解析のための連合学習:タスクの定式化、評価設定、新しいアルゴリズム
- Authors: Tianshu Zhang, Changchang Liu, Wei-Han Lee, Yu Su, Huan Sun
- Abstract要約: 複数のクライアントは、セマンティック解析データを共有せずに、1つのグローバルモデルを協調的にトレーニングする。
Lorarは、各ラウンド中のトレーニング損失の削減に基づいて、グローバルモデル更新に対する各クライアントのコントリビューションを調整する。
より小さなデータセットを持つクライアントは、より大きなパフォーマンス向上を享受する。
- 参考スコア(独自算出の注目度): 29.636944156801327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies a new task of federated learning (FL) for semantic
parsing, where multiple clients collaboratively train one global model without
sharing their semantic parsing data. By leveraging data from multiple clients,
the FL paradigm can be especially beneficial for clients that have little
training data to develop a data-hungry neural semantic parser on their own. We
propose an evaluation setup to study this task, where we re-purpose widely-used
single-domain text-to-SQL datasets as clients to form a realistic heterogeneous
FL setting and collaboratively train a global model. As standard FL algorithms
suffer from the high client heterogeneity in our realistic setup, we further
propose a novel LOss Reduction Adjusted Re-weighting (Lorar) mechanism to
mitigate the performance degradation, which adjusts each client's contribution
to the global model update based on its training loss reduction during each
round. Our intuition is that the larger the loss reduction, the further away
the current global model is from the client's local optimum, and the larger
weight the client should get. By applying Lorar to three widely adopted FL
algorithms (FedAvg, FedOPT and FedProx), we observe that their performance can
be improved substantially on average (4%-20% absolute gain under MacroAvg) and
that clients with smaller datasets enjoy larger performance gains. In addition,
the global model converges faster for almost all the clients.
- Abstract(参考訳): 本稿では,複数のクライアントがセマンティック解析データを共有することなく,ひとつのグローバルモデルを協調訓練する,セマンティック解析のためのフェデレートラーニング(FL)の新たな課題について検討する。
複数のクライアントからのデータを活用することで、FLパラダイムは、トレーニングデータの少ないクライアントに対して、独自のデータハングリーなニューラルネットワークセマンティックパーザを開発する上で、特に有用である。
本研究では,このタスクを評価するための評価設定を提案し,クライアントとして広く使用されている単一ドメインのテキスト・トゥ・SQLデータセットを用いて,現実的な異種FL設定を作成し,グローバルモデルを協調訓練する。
現実的な設定では,標準FLアルゴリズムは高いクライアントの不均一性に悩まされるため,各ラウンドにおけるトレーニング損失低減に基づいて,各クライアントのグローバルモデル更新への貢献を調整し,性能劣化を緩和する,LOss Reduction Adjusted Re-weighting (Lorar) 機構も提案する。
私たちの直感は、損失削減が大きくなるほど、現在のグローバルモデルはクライアントのローカルな最適化からさらに遠ざけ、クライアントが得るべき重量が大きくなるということです。
広範に採用されている3つのflアルゴリズム(fedavg, fedopt, fedprox)にlorarを適用することで、その性能は平均で大幅に向上し(マクロavgでは4%-20%の絶対利得)、より小さなデータセットを持つクライアントはより大きなパフォーマンス向上を享受できる。
さらに、グローバルモデルは、ほぼすべてのクライアントに対してより高速に収束する。
関連論文リスト
- An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z) - Adaptive Self-Distillation for Minimizing Client Drift in Heterogeneous
Federated Learning [9.975023463908496]
Federated Learning(FL)は、クライアントがローカルトレーニングデータを共有せずに、局所的にトレーニングされたモデルを集約することで、グローバルモデルの共同トレーニングを可能にする機械学習パラダイムである。
本稿では,適応自己蒸留(ASD)に基づく新たな正規化手法を提案する。
我々の正規化方式は,グローバルモデルエントロピーとクライアントのラベル分布に基づいて,クライアントのトレーニングデータに適応的に適応的に適応する。
論文 参考訳(メタデータ) (2023-05-31T07:00:42Z) - DYNAFED: Tackling Client Data Heterogeneity with Global Dynamics [60.60173139258481]
非イド分散データに対する局所訓練は、偏向局所最適化をもたらす。
自然な解決策は、サーバがデータ分散全体のグローバルなビューを持つように、すべてのクライアントデータをサーバに収集することです。
本稿では,データプライバシを損なうことなく,サーバ上でのグローバルな知識の収集と活用を図る。
論文 参考訳(メタデータ) (2022-11-20T06:13:06Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Gradient Masked Averaging for Federated Learning [24.687254139644736]
フェデレートラーニングは、統一グローバルモデルの学習を協調するために、異種データを持つ多数のクライアントを可能にする。
標準FLアルゴリズムは、サーバのグローバルモデルを近似するために、モデルパラメータや勾配の更新を平均化する。
本稿では,クライアント更新の標準平均化の代替として,FLの勾配マスク平均化手法を提案する。
論文 参考訳(メタデータ) (2022-01-28T08:42:43Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z) - FedProf: Optimizing Federated Learning with Dynamic Data Profiling [9.74942069718191]
フェデレートラーニング(FL)は、分散データから学ぶためのプライバシ保護ソリューションとして大きな可能性を示している。
クライアントの大多数は、バイアス、ノイズ、あるいは無関係な低品質のデータのみを保有している。
本研究では,データプライバシを侵害することなくFLを最適化するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-02T20:10:14Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
フェデレーションラーニングにより、クライアントはプライベートデータを中央サーバーに送信することなく、グローバルモデルを共同でトレーニングできます。
em-Influenceという新しい概念を定義し、パラメータに対するこの影響を定量化し、このメトリクスを推定する効果的な効率的なモデルを提案しました。
論文 参考訳(メタデータ) (2020-12-20T14:34:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。