論文の概要: Super-Resolution of License Plate Images Using Attention Modules and
Sub-Pixel Convolution Layers
- arxiv url: http://arxiv.org/abs/2305.17313v1
- Date: Sat, 27 May 2023 00:17:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-30 20:21:32.098984
- Title: Super-Resolution of License Plate Images Using Attention Modules and
Sub-Pixel Convolution Layers
- Title(参考訳): アテンションモジュールとサブピクセル畳み込み層を用いたライセンスプレート画像の超解像
- Authors: Valfride Nascimento, Rayson Laroca, Jorge de A. Lambert, William
Robson Schwartz, David Menotti
- Abstract要約: 監視画像における構造的特徴およびテクスチャ的特徴の検出を強化するために,Single-Image Super-Resolution (SISR) アプローチを導入する。
提案手法は,サブピクセルの畳み込み層と,光学的文字認識(OCR)モデルを用いて特徴抽出を行うロス関数を含む。
以上の結果から, これらの低解像度合成画像の再構成手法は, 定量化と定性化の両面で, 既存の画像よりも優れていたことが示唆された。
- 参考スコア(独自算出の注目度): 3.8831062015253055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have seen significant developments in the field of License Plate
Recognition (LPR) through the integration of deep learning techniques and the
increasing availability of training data. Nevertheless, reconstructing license
plates (LPs) from low-resolution (LR) surveillance footage remains challenging.
To address this issue, we introduce a Single-Image Super-Resolution (SISR)
approach that integrates attention and transformer modules to enhance the
detection of structural and textural features in LR images. Our approach
incorporates sub-pixel convolution layers (also known as PixelShuffle) and a
loss function that uses an Optical Character Recognition (OCR) model for
feature extraction. We trained the proposed architecture on synthetic images
created by applying heavy Gaussian noise to high-resolution LP images from two
public datasets, followed by bicubic downsampling. As a result, the generated
images have a Structural Similarity Index Measure (SSIM) of less than 0.10. Our
results show that our approach for reconstructing these low-resolution
synthesized images outperforms existing ones in both quantitative and
qualitative measures. Our code is publicly available at
https://github.com/valfride/lpr-rsr-ext/
- Abstract(参考訳): 近年、深層学習技術の統合とトレーニングデータの利用の増加により、ライセンスプレート認識(LPR)の分野で大きな発展を遂げている。
それでも、低解像度(LR)監視映像からライセンスプレート(LP)を再構築することは困難である。
この問題に対処するために、LR画像の構造的特徴やテクスチャ的特徴の検出を強化するために、注目モジュールとトランスフォーマーモジュールを統合したSingle-Image Super-Resolution (SISR)アプローチを導入する。
提案手法は,サブピクセルの畳み込み層(PixelShuffleとも呼ばれる)と,光学文字認識(OCR)モデルを用いて特徴抽出を行うロス関数を含む。
2つの公開データセットから高分解能LP画像に重いガウス雑音を適用して生成した合成画像に基づいて,提案アーキテクチャを訓練した。
その結果、生成された画像は、構造類似度指標(SSIM)が0.10未満である。
以上の結果から, これらの低解像度合成画像の再構成手法は, 定量化と定性化の両面で, 既存の画像よりも優れていることがわかった。
私たちのコードはhttps://github.com/valfride/lpr-rsr-ext/で公開されています。
関連論文リスト
- Enhancing License Plate Super-Resolution: A Layout-Aware and Character-Driven Approach [2.9628782269544685]
本稿では, LPRタスク自体の性能だけでなく, 解像度, テクスチャ, 構造的詳細などの要因を考慮した新しい損失関数Layout and Character Oriented Focal Loss(LCOFL)を提案する。
我々は、変形可能な畳み込みと共有重み付けを用いた文字特徴学習を強化し、識別器として光学文字認識(OCR)モデルを用いたGANベースのトレーニングアプローチを採用する。
実験の結果, 文字再構成の精度は向上し, 定量化と定性化の両面で, 最先端の2つの手法に優れていた。
論文 参考訳(メタデータ) (2024-08-27T14:40:19Z) - Cascaded Cross-Attention Networks for Data-Efficient Whole-Slide Image
Classification Using Transformers [0.11219061154635457]
全スライディングイメージングは、組織標本の高解像度画像のキャプチャとデジタル化を可能にする。
高解像度情報を効果的に活用するための候補としてトランスフォーマーアーキテクチャが提案されている。
本稿では,抽出されたパッチ数と線形にスケールするクロスアテンション機構に基づく新しいカスケード型クロスアテンションネットワーク(CCAN)を提案する。
論文 参考訳(メタデータ) (2023-05-11T16:42:24Z) - Combining Attention Module and Pixel Shuffle for License Plate
Super-Resolution [3.8831062015253055]
本研究は,低解像度・低画質画像におけるライセンスプレート(LP)再構成に焦点を当てた。
本稿では、注目/変圧器モジュールの概念を拡張したシングルイメージ超解法(SISR)アプローチを提案する。
実験では, 提案手法は, 定量的および定性的に, ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2022-10-30T13:05:07Z) - Exploring Resolution and Degradation Clues as Self-supervised Signal for
Low Quality Object Detection [77.3530907443279]
劣化した低解像度画像中の物体を検出するための,新しい自己教師型フレームワークを提案する。
本手法は, 既存手法と比較して, 異変劣化状況に直面する場合に比べ, 優れた性能を示した。
論文 参考訳(メタデータ) (2022-08-05T09:36:13Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
本稿では,ハイパースペクトル(HS)画像の難解化問題に対処する。
ランク付き低次元畳み込み集合(Re-ConvSet)を提案する。
次に、Re-ConvSetを広く使われているU-Netアーキテクチャに組み込んで、HS画像復号法を構築する。
論文 参考訳(メタデータ) (2022-07-09T13:35:12Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
エイリアスの影響を抑制するために階層画像超解像ネットワーク(HSRNet)を提案する。
HSRNetは、他の作品よりも定量的かつ視覚的なパフォーマンスを向上し、エイリアスをより効果的に再送信する。
論文 参考訳(メタデータ) (2022-06-07T14:55:32Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
本稿では,ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とする。
我々は、高解像度の空間的詳細を同時に保存しながら、複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
提案手法は,デフォーカス・デブロアリング,画像デノイング,超解像,画像強調など,さまざまな画像処理タスクに対して,最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2022-04-19T17:59:45Z) - SDWNet: A Straight Dilated Network with Wavelet Transformation for Image
Deblurring [23.86692375792203]
画像劣化は、ぼやけた画像から鋭い画像を復元することを目的としたコンピュータビジョンの問題である。
我々のモデルは拡張畳み込みを用いて空間分解能の高い大きな受容場を得ることができる。
本稿では,ウェーブレット変換を用いた新しいモジュールを提案する。
論文 参考訳(メタデータ) (2021-10-12T07:58:10Z) - LAPAR: Linearly-Assembled Pixel-Adaptive Regression Network for Single
Image Super-Resolution and Beyond [75.37541439447314]
単一画像超解像(SISR)は、低解像度(LR)画像を高解像度(HR)バージョンにアップサンプリングする根本的な問題を扱う。
本稿では,線形組立画素適応回帰ネットワーク (LAPAR) を提案する。
論文 参考訳(メタデータ) (2021-05-21T15:47:18Z) - Deep Burst Super-Resolution [165.90445859851448]
バースト超解像タスクのための新しいアーキテクチャを提案する。
我々のネットワークは複数のノイズRAW画像を入力として取り出し、出力として分解された超解像RGB画像を生成する。
実世界のデータのトレーニングと評価を可能にするため,BurstSRデータセットも導入する。
論文 参考訳(メタデータ) (2021-01-26T18:57:21Z) - Super-Resolution of Real-World Faces [3.4376560669160394]
実の低解像度 (LR) の顔画像は、変わらず複雑で既知のダウンサンプリングカーネルによってキャプチャされる劣化を含んでいる。
本稿では,特徴抽出モジュールがLR画像からロバストな特徴を抽出する2つのモジュール超解像ネットワークを提案する。
我々は、劣化GANを訓練し、双対的に縮小されたクリーン画像を実際の劣化画像に変換し、得られた劣化LR画像と、そのクリーンLR画像とを補間する。
論文 参考訳(メタデータ) (2020-11-04T17:25:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。