Improved Privacy-Preserving PCA Using Optimized Homomorphic Matrix
Multiplication
- URL: http://arxiv.org/abs/2305.17341v4
- Date: Thu, 17 Aug 2023 09:38:24 GMT
- Title: Improved Privacy-Preserving PCA Using Optimized Homomorphic Matrix
Multiplication
- Authors: Xirong Ma
- Abstract summary: Principal Component Analysis (PCA) is a pivotal technique widely utilized in the realms of machine learning and data analysis.
In recent years, there have been endeavors to utilize homomorphic encryption in privacy-preserving PCA algorithms for the secure cloud computing scenario.
We propose a novel approach to privacy-preserving PCA that addresses these limitations, resulting in superior efficiency, accuracy, and scalability compared to previous approaches.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Principal Component Analysis (PCA) is a pivotal technique widely utilized in
the realms of machine learning and data analysis. It aims to reduce the
dimensionality of a dataset while minimizing the loss of information. In recent
years, there have been endeavors to utilize homomorphic encryption in
privacy-preserving PCA algorithms for the secure cloud computing scenario.
These approaches commonly employ a PCA routine known as PowerMethod, which
takes the covariance matrix as input and generates an approximate eigenvector
corresponding to the primary component of the dataset. However, their
performance is constrained by the absence of an efficient homomorphic
covariance matrix computation circuit and an accurate homomorphic vector
normalization strategy in the PowerMethod algorithm. In this study, we propose
a novel approach to privacy-preserving PCA that addresses these limitations,
resulting in superior efficiency, accuracy, and scalability compared to
previous approaches
Related papers
- Learning-Augmented K-Means Clustering Using Dimensional Reduction [1.7243216387069678]
We propose a solution to reduce the dimensionality of the dataset using Principal Component Analysis (PCA)
PCA is well-established in the literature and has become one of the most useful tools for data modeling, compression, and visualization.
arXiv Detail & Related papers (2024-01-06T12:02:33Z) - Spectral Entry-wise Matrix Estimation for Low-Rank Reinforcement
Learning [53.445068584013896]
We study matrix estimation problems arising in reinforcement learning (RL) with low-rank structure.
In low-rank bandits, the matrix to be recovered specifies the expected arm rewards, and for low-rank Markov Decision Processes (MDPs), it may for example characterize the transition kernel of the MDP.
We show that simple spectral-based matrix estimation approaches efficiently recover the singular subspaces of the matrix and exhibit nearly-minimal entry-wise error.
arXiv Detail & Related papers (2023-10-10T17:06:41Z) - Large-Scale OD Matrix Estimation with A Deep Learning Method [70.78575952309023]
The proposed method integrates deep learning and numerical optimization algorithms to infer matrix structure and guide numerical optimization.
We conducted tests to demonstrate the good generalization performance of our method on a large-scale synthetic dataset.
arXiv Detail & Related papers (2023-10-09T14:30:06Z) - Nearly-Linear Time and Streaming Algorithms for Outlier-Robust PCA [43.106438224356175]
We develop a nearly-linear time algorithm for robust PCA with near-optimal error guarantees.
We also develop a single-pass streaming algorithm for robust PCA with memory usage nearly-linear in the dimension.
arXiv Detail & Related papers (2023-05-04T04:45:16Z) - An online algorithm for contrastive Principal Component Analysis [9.090031210111919]
We derive an online algorithm for cPCA* and show that it maps onto a neural network with local learning rules, so it can potentially be implemented in energy efficient neuromorphic hardware.
We evaluate the performance of our online algorithm on real datasets and highlight the differences and similarities with the original formulation.
arXiv Detail & Related papers (2022-11-14T19:48:48Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Robust factored principal component analysis for matrix-valued outlier
accommodation and detection [4.228971753938522]
Factored PCA (FPCA) is a probabilistic extension of PCA for matrix data.
We propose a robust extension of FPCA (RFPCA) for matrix data.
RFPCA can adaptively down-weight outliers and yield robust estimates.
arXiv Detail & Related papers (2021-12-13T16:12:22Z) - A Linearly Convergent Algorithm for Distributed Principal Component
Analysis [12.91948651812873]
This paper introduces a feedforward neural network-based one time-scale distributed PCA algorithm termed Distributed Sanger's Algorithm (DSA)
The proposed algorithm is shown to converge linearly to a neighborhood of the true solution.
arXiv Detail & Related papers (2021-01-05T00:51:14Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - Variance-Reduced Off-Policy Memory-Efficient Policy Search [61.23789485979057]
Off-policy policy optimization is a challenging problem in reinforcement learning.
Off-policy algorithms are memory-efficient and capable of learning from off-policy samples.
arXiv Detail & Related papers (2020-09-14T16:22:46Z) - Approximation Algorithms for Sparse Principal Component Analysis [57.5357874512594]
Principal component analysis (PCA) is a widely used dimension reduction technique in machine learning and statistics.
Various approaches to obtain sparse principal direction loadings have been proposed, which are termed Sparse Principal Component Analysis.
We present thresholding as a provably accurate, time, approximation algorithm for the SPCA problem.
arXiv Detail & Related papers (2020-06-23T04:25:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.