Solve sparse PCA problem by employing Hamiltonian system and leapfrog method
- URL: http://arxiv.org/abs/2503.23335v1
- Date: Sun, 30 Mar 2025 06:39:11 GMT
- Title: Solve sparse PCA problem by employing Hamiltonian system and leapfrog method
- Authors: Loc Hoang Tran,
- Abstract summary: We propose a novel sparse PCA algorithm that imposes sparsity through a smooth L1 penalty.<n> Experimental evaluations on a face recognition dataset-using both k-nearest neighbor and kernel ridge regressions-demonstrate that the proposed sparse PCA methods consistently achieve higher classification accuracy than conventional PCA.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Principal Component Analysis (PCA) is a widely utilized technique for dimensionality reduction; however, its inherent lack of interpretability-stemming from dense linear combinations of all feature-limits its applicability in many domains. In this paper, we propose a novel sparse PCA algorithm that imposes sparsity through a smooth L1 penalty and leverages a Hamiltonian formulation solved via geometric integration techniques. Specifically, we implement two distinct numerical methods-one based on the Proximal Gradient (ISTA) approach and another employing a leapfrog (fourth-order Runge-Kutta) scheme-to minimize the energy function that balances variance maximization with sparsity enforcement. To extract a subset of sparse principal components, we further incorporate a deflation technique and subsequently transform the original high-dimensional face data into a lower-dimensional feature space. Experimental evaluations on a face recognition dataset-using both k-nearest neighbor and kernel ridge regression classifiers-demonstrate that the proposed sparse PCA methods consistently achieve higher classification accuracy than conventional PCA. Future research will extend this framework to integrate sparse PCA with modern deep learning architectures for multimodal recognition tasks.
Related papers
- Novel sparse PCA method via Runge Kutta numerical method(s) for face recognition [0.0]
This paper explores the implementation of sparse Principal Component Analysis (PCA) using the Proximal Gradient method and the Runge-Kutta numerical methods.
Experimental results demonstrate that combining sparse PCA-solved via the Proximal Gradient method or the Runge-Kutta numerical approach-with a classification system yields higher accuracy compared to standard PCA.
arXiv Detail & Related papers (2025-03-30T13:34:06Z) - Differentially Private Optimization with Sparse Gradients [60.853074897282625]
We study differentially private (DP) optimization problems under sparsity of individual gradients.
Building on this, we obtain pure- and approximate-DP algorithms with almost optimal rates for convex optimization with sparse gradients.
arXiv Detail & Related papers (2024-04-16T20:01:10Z) - Improved Privacy-Preserving PCA Using Optimized Homomorphic Matrix
Multiplication [0.0]
Principal Component Analysis (PCA) is a pivotal technique widely utilized in the realms of machine learning and data analysis.
In recent years, there have been endeavors to utilize homomorphic encryption in privacy-preserving PCA algorithms for the secure cloud computing scenario.
We propose a novel approach to privacy-preserving PCA that addresses these limitations, resulting in superior efficiency, accuracy, and scalability compared to previous approaches.
arXiv Detail & Related papers (2023-05-27T02:51:20Z) - Sparse PCA With Multiple Components [2.1485350418225244]
Sparse Principal Component Analysis (sPCA) is a technique for obtaining combinations of features that explain variance of high-dimensional datasets in an interpretable manner.<n>Most existing PCA methods do not guarantee the optimality, let alone the optimality, of the resulting solution when we seek multiple sparse PCs.<n>We propose exact methods and rounding mechanisms that, together, obtain solutions with a bound gap on the order of 0%-15% for real-world datasets.
arXiv Detail & Related papers (2022-09-29T13:57:18Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
We propose a conditional gradient method (CGM) for minimizing convex finite-sum objectives formed as a sum of smooth and non-smooth terms.
The proposed method, equipped with an average gradient (SAG) estimator, requires only one sample per iteration. Nevertheless, it guarantees fast convergence rates on par with more sophisticated variance reduction techniques.
arXiv Detail & Related papers (2022-02-26T19:10:48Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
Algorithm unfolding creates an interpretable and parsimonious neural network architecture by implementing each iteration of a model-based algorithm as a neural layer.
In this paper, leveraging a recent linear algebraic theorem called Gershgorin disc perfect alignment (GDPA), we unroll a projection-free algorithm for semi-definite programming relaxation (SDR) of a binary graph.
Experimental results show that our unrolled network outperformed pure model-based graph classifiers, and achieved comparable performance to pure data-driven networks but using far fewer parameters.
arXiv Detail & Related papers (2021-09-10T07:01:15Z) - Improving Metric Dimensionality Reduction with Distributed Topology [68.8204255655161]
DIPOLE is a dimensionality-reduction post-processing step that corrects an initial embedding by minimizing a loss functional with both a local, metric term and a global, topological term.
We observe that DIPOLE outperforms popular methods like UMAP, t-SNE, and Isomap on a number of popular datasets.
arXiv Detail & Related papers (2021-06-14T17:19:44Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - Exact and Approximation Algorithms for Sparse PCA [1.7640556247739623]
This paper proposes two exact mixed-integer SDPs (MISDPs)
We then analyze the theoretical optimality gaps of their continuous relaxation values and prove that they are stronger than that of the state-of-art one.
Since off-the-shelf solvers, in general, have difficulty in solving MISDPs, we approximate SPCA with arbitrary accuracy by a mixed-integer linear program (MILP) of a similar size as MISDPs.
arXiv Detail & Related papers (2020-08-28T02:07:08Z) - Approximation Algorithms for Sparse Principal Component Analysis [57.5357874512594]
Principal component analysis (PCA) is a widely used dimension reduction technique in machine learning and statistics.
Various approaches to obtain sparse principal direction loadings have been proposed, which are termed Sparse Principal Component Analysis.
We present thresholding as a provably accurate, time, approximation algorithm for the SPCA problem.
arXiv Detail & Related papers (2020-06-23T04:25:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.