論文の概要: Augmenting Large Language Model Translators via Translation Memories
- arxiv url: http://arxiv.org/abs/2305.17367v1
- Date: Sat, 27 May 2023 04:47:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-30 19:53:31.608856
- Title: Augmenting Large Language Model Translators via Translation Memories
- Title(参考訳): 翻訳記憶を用いた大規模言語モデル翻訳者の拡張
- Authors: Yongyu Mu, Abudurexiti Reheman, Zhiquan Cao, Yuchun Fan, Bei Li,
Yinqiao Li, Tong Xiao, Chunliang Zhang, Jingbo Zhu
- Abstract要約: 翻訳メモリ(TM)をプロンプトとして使用することは、機械翻訳モデルのコンテキスト内学習において有望なアプローチである。
我々は、TMで大きな言語モデル(LLM)をプロンプトし、より優れたトランスレータを実現するための一歩を踏み出した。
- 参考スコア(独自算出の注目度): 32.28138249566329
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using translation memories (TMs) as prompts is a promising approach to
in-context learning of machine translation models. In this work, we take a step
towards prompting large language models (LLMs) with TMs and making them better
translators. We find that the ability of LLMs to ``understand'' prompts is
indeed helpful for making better use of TMs. Experiments show that the results
of a pre-trained LLM translator can be greatly improved by using high-quality
TM-based prompts. These results are even comparable to those of the
state-of-the-art NMT systems which have access to large-scale in-domain
bilingual data and are well tuned on the downstream tasks.
- Abstract(参考訳): 翻訳メモリ(tms)をプロンプトとして使用することは、機械翻訳モデルの文脈内学習に有望なアプローチである。
本研究は,大規模言語モデル(LLM)をTMでプロンプトし,より優れた翻訳者を実現するためのステップである。
LLM が ``understand'' プロンプトを '`understand' する能力は確かに TM をよりよく活用するのに役立ちます。
実験により, 高品質TMベースのプロンプトを用いることで, 事前学習したLLMトランスレータの結果を大幅に改善できることが示された。
これらの結果は、大規模なドメイン内バイリンガルデータにアクセスでき、下流タスクによく調整されている最先端のnmtシステムとさえ匹敵する。
関連論文リスト
- Self-Distillation for Model Stacking Unlocks Cross-Lingual NLU in 200+ Languages [2.53740603524637]
機械翻訳モデル(MT)は優れた多言語表現を生成し、低リソース言語でも強力な翻訳性能が得られる。
本研究は,MTエンコーダをサンプル効率のよい自己蒸留法により,言語バックボーンに直接組み込むことにより,両世界のベストを得られる。
MT-LLMは、MTエンコーダから固有の多言語表現アライメントを保持しており、低リソース言語は英語中心のLLMに埋め込まれた豊富な知識を取り入れることができる。
論文 参考訳(メタデータ) (2024-06-18T16:00:20Z) - TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて顕著な性能を示した。
本稿では,自己回帰を通した翻訳を行うTasTeフレームワークを提案する。
WMT22ベンチマークにおける4つの言語方向の評価結果から,既存の手法と比較して,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-06-12T17:21:21Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
オフターゲット翻訳は、特に低リソース言語では未解決の問題である。
最近の研究は、翻訳命令の機能を強調するために高度なプロンプト戦略を設計するか、LLMの文脈内学習能力を活用している。
本研究では,LLMの命令追従能力(特に翻訳方向)を向上させるために,2段階の微調整アルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-03-21T13:47:40Z) - Speech Translation with Large Language Models: An Industrial Practice [64.5419534101104]
LLM-STは,事前学習型大言語モデル(LLM)に基づいて構築された,新規で効果的な音声翻訳モデルである。
大規模言語モデル(LLM)を音声エンコーダと統合し、マルチタスクの命令チューニングを利用することで、LLM-STは正確なタイムスタンプと翻訳を生成することができる。
英語と中国語のデータセットの厳密な実験を通じて,LLM-STの異常な性能を示す。
論文 参考訳(メタデータ) (2023-12-21T05:32:49Z) - On-the-Fly Fusion of Large Language Models and Machine Translation [3.718665608549311]
我々は,同じタスクと入力に対して,LLMを用いた機械翻訳モデルのオンザフライアンサンブルを提案する。
LLMはNMTモデルの翻訳を改善することができ、LLMとのアンサンブルは2つのより強いMTモデルをアンサンブルするよりも優れた翻訳を生成することができる。
論文 参考訳(メタデータ) (2023-11-14T16:49:33Z) - TIM: Teaching Large Language Models to Translate with Comparison [78.66926087162672]
本稿では,LLMに翻訳学習を教えるために,サンプルを用いた新しいフレームワークを提案する。
我々のアプローチは、正しい翻訳例と間違った翻訳例をモデルに提示し、好みの損失を使ってモデルの学習をガイドすることである。
本研究は,翻訳タスクのための微調整LDMの新しい視点を提供し,高品質な翻訳を実現するための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2023-07-10T08:15:40Z) - Eliciting the Translation Ability of Large Language Models via Multilingual Finetuning with Translation Instructions [68.01449013641532]
大規模事前学習言語モデル(LLM)は多言語翻訳において強力な能力を示している。
本稿では,多言語事前学習言語モデルであるXGLM-7Bを微調整して,多言語翻訳を行う方法を提案する。
論文 参考訳(メタデータ) (2023-05-24T12:00:24Z) - Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis [103.89753784762445]
大規模言語モデル(LLM)は多言語機械翻訳(MMT)の処理において顕著な可能性を示した。
本稿では, MMT における LLM の利点と課題を体系的に検討する。
また,ChatGPTとGPT-4を含む8つのLLMを徹底的に評価した。
論文 参考訳(メタデータ) (2023-04-10T15:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。