A Zero-Threshold PT-Symmetric Polariton-Raman Laser
- URL: http://arxiv.org/abs/2305.17475v4
- Date: Mon, 16 Sep 2024 15:04:35 GMT
- Title: A Zero-Threshold PT-Symmetric Polariton-Raman Laser
- Authors: Avijit Dhara, Pritam Das, Devarshi Chakrabarty, Kritika Ghosh, Ayan Roy Chaudhuri, Sajal Dhara,
- Abstract summary: We show a zero-threshold Raman laser can be achieved in an anisotropic optical microcavity in the PT-symmetry broken phase via polarization selective optical pumping.
A microscopic theory of stimulated Raman process in anisotropic microcavity successfully explains our results at various temperatures.
Our realization of the zero-threshold Raman laser and the proposed theory of stimulated Raman scattering in anisotropic microcavity can lead to future development of novel technologies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Parity-time (PT) symmetry in a non-Hermitian framework can be harnessed for numerous applications in optics such as laser mode selection, non-reciprocal light propagation, polaritonic optical switches, and enhanced sensing. Here we show a zero-threshold Raman laser can be achieved in an anisotropic optical microcavity in the PT-symmetry broken phase via polarization selective optical pumping. A loss-gain mechanism between two polarized Stokes modes arises naturally via polarization dependent stimulated scattering and anisotropic Raman gain of the active layered material inside the microcavity. A microscopic theory of stimulated Raman process in anisotropic microcavity successfully explains our results at various temperatures and enabled us to predict the parameters of a proposed quantum PT-symmetric Hamiltonian. Our realization of the zero-threshold Raman laser and the proposed theory of stimulated Raman scattering in anisotropic microcavity can lead to future development of novel technologies such as efficient quantum frequency converters for applications in quantum photonics and information.
Related papers
- Wavevector-resolved polarization entanglement from radiative cascades [27.84599956781646]
We show that there exists an interplay between photon polarization and emission wavevector, strongly affecting quantum correlations when emitters are embedded in micro-cavities.
Our results, backed by theoretical modelling, yield a brand-new understanding of cascaded emission for various quantum emitters.
arXiv Detail & Related papers (2024-09-12T09:32:29Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED [41.94295877935867]
We design a passive conditional gate between co-propagating photons using an array of only two-level emitters.
The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes.
We show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings.
arXiv Detail & Related papers (2024-07-08T18:00:25Z) - Photon correlation time-asymmetry and dynamical coherence in multichromophoric systems [44.99833362998488]
We show that time-asymmetries in the cross-correlations of photons corresponding to different polarizations can be exploited to probe quantum coherent transport mechanisms and steady-state coherence properties.
Our results put forward photon correlation asymmetry as a promising approach to investigate coherent contributions to excited-stated dynamics in molecular aggregates and other many-site quantum emitters.
arXiv Detail & Related papers (2024-04-24T21:06:01Z) - In-situ-tunable spin-spin interactions in a Penning trap with in-bore
optomechanics [41.94295877935867]
We present an optomechanical system for in-situ tuning of the coherent spin-motion and spin-spin interaction strength.
We characterize the system using measurements of the induced mean-field spin precession.
These experiments show approximately a $times2$ variation in the ratio of the coherent to incoherent interaction strength.
arXiv Detail & Related papers (2024-01-31T11:00:39Z) - On-demand indistinguishable and entangled photons using tailored cavity
designs [0.0]
We focus on the generation of pairs of photons with high degrees of polarization entanglement and simultaneously high indistinguishability.
We demonstrate that a suitably tailored circular Bragg reflector fulfills the requirements of sufficient selective Purcell enhancement.
We report non-trivial dependencies on system parameters and use the predictive power of our combined theoretical approach to determine the optimal range of Purcell enhancement.
arXiv Detail & Related papers (2023-03-24T09:26:03Z) - Coupling enhancement and symmetrization of single-photon optomechanics
in open quantum systems [0.76146285961466]
We study optimal reciprocal transport in symmetric optomechanics.
This work may pave the way to studying the single-photon optomechanical effects with current experimental platforms.
arXiv Detail & Related papers (2023-02-09T19:01:15Z) - Optomechanical Effects in Nanocavity-enhanced Resonant Raman Scattering
of a Single Molecule [7.8701096149524865]
We address the optomechanical effects in surface-enhanced resonant Raman scattering (SERRS) from a single molecule in a nano-particle on mirror (NPoM) nanocavity.
We develop a quantum master equation theory, which combines macroscopic quantum electrodynamics and electron-vibration interaction within the framework of open quantum system theory.
We use electromagnetic simulations and time-dependent density functional theory calculations to study the SERRS of a methylene blue molecule in a realistic NPoM nanocavity.
arXiv Detail & Related papers (2022-10-06T02:12:07Z) - Light propagation and magnon-photon coupling in optically dispersive
magnetic media [0.0]
We present a derivation of the magnon-photon coupling Hamiltonian in dispersive media.
We show that the coupling of magnons to plane-wave non-degenerate modes vanishes at specific frequencies due to polarization selection rules tuned by dispersion.
Our results pave the way for the design of dispersive optomagnonic systems.
arXiv Detail & Related papers (2021-11-10T18:59:52Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Squeezed lasing [0.0]
We introduce the concept of a squeezed laser, in which a squeezed cavity mode develops a macroscopic photonic occupation due to stimulated emission.
The squeezed laser can find applications that go beyond those of standard lasers thanks to the squeezed character.
arXiv Detail & Related papers (2020-08-06T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.