Zero-Threshold PT-Symmetric Polariton-Raman Laser
- URL: http://arxiv.org/abs/2305.17475v5
- Date: Sat, 01 Feb 2025 08:33:56 GMT
- Title: Zero-Threshold PT-Symmetric Polariton-Raman Laser
- Authors: Avijit Dhara, Pritam Das, Devarshi Chakrabarty, Kritika Ghosh, Ayan Roy Chaudhuri, Sajal Dhara,
- Abstract summary: A zero-threshold Raman laser can be achieved in an anisotropic optical microcavity via polarization-controlled optical pumping.
A Parity-Time symmetric Hamiltonian has been proposed to explain the emergence of a single polarization mode.
- Score: 0.0
- License:
- Abstract: Anisotropy endows topological aspects in optical systems and furnishes a platform to explore non-Hermitian physics, which can be harnessed for the polarization-selective amplification of light. Here, we show a zero-threshold Raman laser can be achieved in an anisotropic optical microcavity via polarization-controlled optical pumping. A loss-gain mechanism between two polarized Stokes modes arises naturally via polarization-dependent stimulated scattering and anisotropic Raman gain of the active layered material inside the microcavity. A Parity-Time (PT) symmetric Hamiltonian has been proposed to explain the emergence of a single polarization mode, essential for achieving a zero-threshold lasing condition. Additionally, intensity correlation measurements of the Stokes modes validate the coherence properties of the emitted light. Our realization of the zero-threshold Raman laser in anisotropic microcavity can open up a new research direction exploring non-Hermitian and topological aspects of light in anisotropic two-dimensional materials.
Related papers
- Photon correlation time-asymmetry and dynamical coherence in multichromophoric systems [44.99833362998488]
We show that time-asymmetries in the cross-correlations of photons corresponding to different polarizations can be exploited to probe quantum coherent transport mechanisms and steady-state coherence properties.
Our results put forward photon correlation asymmetry as a promising approach to investigate coherent contributions to excited-stated dynamics in molecular aggregates and other many-site quantum emitters.
arXiv Detail & Related papers (2024-04-24T21:06:01Z) - In-situ-tunable spin-spin interactions in a Penning trap with in-bore
optomechanics [41.94295877935867]
We present an optomechanical system for in-situ tuning of the coherent spin-motion and spin-spin interaction strength.
We characterize the system using measurements of the induced mean-field spin precession.
These experiments show approximately a $times2$ variation in the ratio of the coherent to incoherent interaction strength.
arXiv Detail & Related papers (2024-01-31T11:00:39Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Linear optical properties of organic microcavity polaritons with
non-Markovian Quantum State Diffusion [0.0]
Hybridisation of the cavity modes and the excitons to polariton states determine the linear optical properties of organic semiconductors in microcavities.
We compute the refractive index for such system using the Holstein-Tavis-Cummings model and determine then the linear optical properties using the transfer matrix method.
arXiv Detail & Related papers (2023-10-29T21:25:35Z) - Non-Hermitian zero mode laser in a nanophotonic trimer [55.41644538483948]
We report on the direct observation of a lasing zero mode in a non-Hermitian three coupled nanocavity array.
We show efficient excitation for nearly equal pump power in the two extreme cavities.
The realization of zero mode lasing in large arrays of coupled nanolasers has potential applications in laser-mode engineering.
arXiv Detail & Related papers (2023-02-03T15:21:44Z) - Efficient anisotropic polariton lasing using molecular conformation and
orientation in organic microcavities [0.0]
We report a two-fold reduction in the threshold of a polariton laser based on a high-Q microcavity filled with an active layer of poly(9,9-dioctylfluorene) (PFO)
To our knowledge, this threshold is lower than demonstrated with state-of-the art optically pumped organic vertical cavity surface-emitting photon and polariton lasers.
arXiv Detail & Related papers (2022-02-21T18:29:25Z) - All-optical probe of three-dimensional topological insulators based on
high-harmonic generation by circularly-polarized laser fields [3.2168123566725897]
We report the observation of a novel nonlinear optical response from the prototypical three-dimensional topological insulator Bi$$Se$_3$ through the process of high-order harmonic generation.
The implications are in ultrafast probing of topological phase transitions, light-field driven dissipationless electronics, and quantum computation.
arXiv Detail & Related papers (2021-09-30T17:35:10Z) - Localized vibrational modes in waveguide quantum optomechanics with
spontaneously broken PT symmetry [117.44028458220427]
We study theoretically two vibrating quantum emitters trapped near a one-dimensional waveguide and interacting with propagating photons.
In the regime of strong optomechanical interaction the light-induced coupling of emitter vibrations can lead to formation of spatially localized vibration modes, exhibiting parity-time symmetry breaking.
arXiv Detail & Related papers (2021-06-29T12:45:44Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Microsphere kinematics from the polarization of tightly focused
nonseparable light [0.0]
We study the far-field polarization state generated by the scattering of a microsphere in a tightly focused vector beam as a function of the particle position.
Our work highlights the potential of polarization analysis in optical tweezers employing structured light.
arXiv Detail & Related papers (2020-10-30T17:30:23Z) - Complex-birefringent dielectric metasurfaces for arbitrary
polarization-pair transformations [2.4437346122124377]
Birefringent materials or nanostructures that introduce phase differences between two linear polarizations underpin the operation of wave plates for polarization control of light.
We develop metasurfaces realizing a distinct class of complex-birefringent wave plates, which combine polarization transformation with a judiciously tailored polarization-dependent phase retardance and amplitude filtering via diffraction.
arXiv Detail & Related papers (2020-06-30T06:46:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.