論文の概要: The Curse of Recursion: Training on Generated Data Makes Models Forget
- arxiv url: http://arxiv.org/abs/2305.17493v3
- Date: Sun, 14 Apr 2024 05:20:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 00:17:02.247407
- Title: The Curse of Recursion: Training on Generated Data Makes Models Forget
- Title(参考訳): 再帰のカース:生成したデータのトレーニングはモデルを忘れる
- Authors: Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, Nicolas Papernot, Ross Anderson,
- Abstract要約: 大規模言語モデル(LLM)が存続し、オンラインテキストと画像のエコシステム全体に劇的な変化をもたらすだろう。
トレーニングにおけるモデル生成コンテンツの使用は、元のコンテンツ分布の尾部が消える結果のモデルに不可逆的な欠陥を引き起こす。
- 参考スコア(独自算出の注目度): 70.02793975243212
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Stable Diffusion revolutionised image creation from descriptive text. GPT-2, GPT-3(.5) and GPT-4 demonstrated astonishing performance across a variety of language tasks. ChatGPT introduced such language models to the general public. It is now clear that large language models (LLMs) are here to stay, and will bring about drastic change in the whole ecosystem of online text and images. In this paper we consider what the future might hold. What will happen to GPT-{n} once LLMs contribute much of the language found online? We find that use of model-generated content in training causes irreversible defects in the resulting models, where tails of the original content distribution disappear. We refer to this effect as Model Collapse and show that it can occur in Variational Autoencoders, Gaussian Mixture Models and LLMs. We build theoretical intuition behind the phenomenon and portray its ubiquity amongst all learned generative models. We demonstrate that it has to be taken seriously if we are to sustain the benefits of training from large-scale data scraped from the web. Indeed, the value of data collected about genuine human interactions with systems will be increasingly valuable in the presence of content generated by LLMs in data crawled from the Internet.
- Abstract(参考訳): 安定拡散は説明文からのイメージ創造に革命をもたらした。
GPT-2、GPT-3(.5)、GPT-4は様々な言語タスクで驚くべき性能を示した。
ChatGPTはそのような言語モデルを一般向けに導入した。
大規模言語モデル(LLM)が存続し、オンラインテキストと画像のエコシステム全体に劇的な変化をもたらすことは明らかだ。
本稿では,今後の展望について考察する。
LLMがオンラインにある言語の多くに貢献したら、GPT-{n}はどうなるでしょう?
トレーニングにおけるモデル生成コンテンツの使用は、元のコンテンツ分布の尾部が消える結果のモデルに不可逆的な欠陥を引き起こす。
この効果をモデル崩壊と呼び、変分オートエンコーダ、ガウス混合モデル、LLMで起こりうることを示す。
我々は、この現象の背後にある理論的直観を構築し、そのユビキティを、すべての学習された生成モデルの中で表現する。
Webから取り除かれた大規模なデータからトレーニングのメリットを維持するためには、真剣に取り組まなければならないことを実証する。
実際、システムとの真の人間関係に関する収集されたデータの価値は、インターネットからクロールされたデータの中でLLMが生成したコンテンツの存在において、ますます貴重になるでしょう。
関連論文リスト
- Heat Death of Generative Models in Closed-Loop Learning [63.83608300361159]
本研究では、独自の学習データセットに加えて、生成したコンテンツをフィードバックする生成モデルの学習ダイナミクスについて検討する。
各イテレーションで十分な量の外部データが導入されない限り、非自明な温度がモデルを退化させることを示す。
論文 参考訳(メタデータ) (2024-04-02T21:51:39Z) - Premonition: Using Generative Models to Preempt Future Data Changes in
Continual Learning [63.850451635362425]
継続的な学習には、データ分散の継続的な変化に対応するためのモデルが必要である。
本稿では,大規模言語モデルと画像生成モデルの組み合わせが有用であることを示す。
トレーニング済みネットワークのバックボーンは、下流の連続学習問題に有用な表現を学習できることがわかった。
論文 参考訳(メタデータ) (2024-03-12T06:29:54Z) - Identifying and Mitigating Model Failures through Few-shot CLIP-aided
Diffusion Generation [65.268245109828]
本稿では,突発的相関に付随する障害モードのテキスト記述を生成するためのエンドツーエンドフレームワークを提案する。
これらの記述は拡散モデルのような生成モデルを用いて合成データを生成するのに使うことができる。
本実験では, ハードサブポピュレーションの精度(sim textbf21%$)が著しく向上した。
論文 参考訳(メタデータ) (2023-12-09T04:43:49Z) - RegaVAE: A Retrieval-Augmented Gaussian Mixture Variational Auto-Encoder
for Language Modeling [79.56442336234221]
可変オートエンコーダ(VAE)に基づく検索拡張言語モデルであるRegaVAEを紹介する。
テキストコーパスを潜在空間にエンコードし、ソースとターゲットの両方のテキストから現在と将来の情報をキャプチャする。
各種データセットに対する実験結果から,テキスト生成品質と幻覚除去の大幅な改善が示された。
論文 参考訳(メタデータ) (2023-10-16T16:42:01Z) - Studying the impacts of pre-training using ChatGPT-generated text on
downstream tasks [0.0]
本研究の目的は,言語モデルの事前学習における人工テキストの影響を検討することである。
我々は、CNN/DailyMailのニュース記事を用いて事前学習したRoBERTaと、同じ記事をトレーニングに用いたChatGPTの比較分析を行った。
事前学習における人工テキストの利用は、下流作業におけるモデルの性能や性別の偏りに有意な影響を与えないことを示す。
論文 参考訳(メタデータ) (2023-09-02T12:56:15Z) - VIGC: Visual Instruction Generation and Correction [47.477290387002284]
視覚言語タスクのための高品質なインストラクションチューニングデータの不足は依然として課題である。
LLaVAのような現在の主要なパラダイムは、データを生成するために言語のみのGPT-4に依存している。
本稿では,マルチモーダルな大規模言語モデルによる命令調整データの生成を可能にするビジュアルインストラクション生成と補正フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-24T11:21:05Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。