USIM-DAL: Uncertainty-aware Statistical Image Modeling-based Dense
Active Learning for Super-resolution
- URL: http://arxiv.org/abs/2305.17520v1
- Date: Sat, 27 May 2023 16:33:43 GMT
- Title: USIM-DAL: Uncertainty-aware Statistical Image Modeling-based Dense
Active Learning for Super-resolution
- Authors: Vikrant Rangnekar, Uddeshya Upadhyay, Zeynep Akata, Biplab Banerjee
- Abstract summary: Dense regression is a widely used approach in computer vision for tasks such as image super-resolution, enhancement, depth estimation, etc.
We propose incorporating active learning into dense regression models to address this problem.
Active learning allows models to select the most informative samples for labeling, reducing the overall annotation cost while improving performance.
- Score: 47.38982697349244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dense regression is a widely used approach in computer vision for tasks such
as image super-resolution, enhancement, depth estimation, etc. However, the
high cost of annotation and labeling makes it challenging to achieve accurate
results. We propose incorporating active learning into dense regression models
to address this problem. Active learning allows models to select the most
informative samples for labeling, reducing the overall annotation cost while
improving performance. Despite its potential, active learning has not been
widely explored in high-dimensional computer vision regression tasks like
super-resolution. We address this research gap and propose a new framework
called USIM-DAL that leverages the statistical properties of colour images to
learn informative priors using probabilistic deep neural networks that model
the heteroscedastic predictive distribution allowing uncertainty
quantification. Moreover, the aleatoric uncertainty from the network serves as
a proxy for error that is used for active learning. Our experiments on a wide
variety of datasets spanning applications in natural images (visual genome,
BSD100), medical imaging (histopathology slides), and remote sensing (satellite
images) demonstrate the efficacy of the newly proposed USIM-DAL and superiority
over several dense regression active learning methods.
Related papers
- A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - Iterative-in-Iterative Super-Resolution Biomedical Imaging Using One
Real Image [8.412910029745762]
We propose an approach to train the deep learning-based super-resolution models using only one real image.
We employ a mixed metric of image screening to automatically select images with a distribution similar to ground truth.
After five training iterations, the proposed deep learning-based super-resolution model experienced a 7.5% and 5.49% improvement in structural similarity and peak-signal-to-noise ratio.
arXiv Detail & Related papers (2023-06-26T07:57:03Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
We develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure.
We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks.
arXiv Detail & Related papers (2022-03-25T19:05:06Z) - Image-to-Image Regression with Distribution-Free Uncertainty
Quantification and Applications in Imaging [88.20869695803631]
We show how to derive uncertainty intervals around each pixel that are guaranteed to contain the true value.
We evaluate our procedure on three image-to-image regression tasks.
arXiv Detail & Related papers (2022-02-10T18:59:56Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
Variance Aware Training (VAT) method exploits this property by introducing the variance error into the model loss function.
We validate VAT on three medical imaging datasets from diverse domains and various learning objectives.
arXiv Detail & Related papers (2021-05-28T21:34:04Z) - Active Learning in CNNs via Expected Improvement Maximization [2.0305676256390934]
"Dropout-based IMprOvementS" (DEIMOS) is a flexible and computationally-efficient approach to active learning.
Our results demonstrate that DEIMOS outperforms several existing baselines across multiple regression and classification tasks.
arXiv Detail & Related papers (2020-11-27T22:06:52Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
Deep predictive models rely on human supervision in the form of labeled training data.
We propose Ask-n-Learn, an active learning approach based on gradient embeddings obtained using the pesudo-labels estimated in each of the algorithm.
arXiv Detail & Related papers (2020-09-30T05:19:56Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.