Evolving Connectivity for Recurrent Spiking Neural Networks
- URL: http://arxiv.org/abs/2305.17650v1
- Date: Sun, 28 May 2023 07:08:25 GMT
- Title: Evolving Connectivity for Recurrent Spiking Neural Networks
- Authors: Guan Wang, Yuhao Sun, Sijie Cheng, Sen Song
- Abstract summary: Recurrent neural networks (RSNNs) hold great potential for advancing artificial general intelligence.
We propose the evolving connectivity (EC) framework, an inference-only method for training RSNNs.
- Score: 8.80300633999542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recurrent spiking neural networks (RSNNs) hold great potential for advancing
artificial general intelligence, as they draw inspiration from the biological
nervous system and show promise in modeling complex dynamics. However, the
widely-used surrogate gradient-based training methods for RSNNs are inherently
inaccurate and unfriendly to neuromorphic hardware. To address these
limitations, we propose the evolving connectivity (EC) framework, an
inference-only method for training RSNNs. The EC framework reformulates
weight-tuning as a search into parameterized connection probability
distributions, and employs Natural Evolution Strategies (NES) for optimizing
these distributions. Our EC framework circumvents the need for gradients and
features hardware-friendly characteristics, including sparse boolean
connections and high scalability. We evaluate EC on a series of standard
robotic locomotion tasks, where it achieves comparable performance with deep
neural networks and outperforms gradient-trained RSNNs, even solving the
complex 17-DoF humanoid task. Additionally, the EC framework demonstrates a two
to three fold speedup in efficiency compared to directly evolving parameters.
By providing a performant and hardware-friendly alternative, the EC framework
lays the groundwork for further energy-efficient applications of RSNNs and
advances the development of neuromorphic devices.
Related papers
- Decoding finger velocity from cortical spike trains with recurrent spiking neural networks [6.404492073110551]
Invasive brain-machine interfaces (BMIs) can significantly improve the life quality of motor-impaired patients.
BMIs must meet strict latency and energy constraints while providing reliable decoding performance.
We trained RSNNs to decode finger velocity from cortical spike trains of two macaque monkeys.
arXiv Detail & Related papers (2024-09-03T10:15:33Z) - RLEEGNet: Integrating Brain-Computer Interfaces with Adaptive AI for
Intuitive Responsiveness and High-Accuracy Motor Imagery Classification [0.0]
We introduce a framework that leverages Reinforcement Learning with Deep Q-Networks (DQN) for classification tasks.
We present a preprocessing technique for multiclass motor imagery (MI) classification in a One-Versus-The-Rest (OVR) manner.
The integration of DQN with a 1D-CNN-LSTM architecture optimize the decision-making process in real-time.
arXiv Detail & Related papers (2024-02-09T02:03:13Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic chips with high energy efficiency.
We contribute a full-stack toolkit for pre-processing neuromorphic datasets, building deep SNNs, optimizing their parameters, and deploying SNNs on neuromorphic chips.
arXiv Detail & Related papers (2023-10-25T13:15:17Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural
Networks [56.35403810762512]
Spiking neural networks (SNNs) with event-based computation are promising brain-inspired models for energy-efficient applications on neuromorphic hardware.
We study spike-based implicit differentiation on the equilibrium state (SPIDE) that extends the recently proposed training method.
arXiv Detail & Related papers (2023-02-01T04:22:59Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Online Training of Spiking Recurrent Neural Networks with Phase-Change
Memory Synapses [1.9809266426888898]
Training spiking neural networks (RNNs) on dedicated neuromorphic hardware is still an open challenge.
We present a simulation framework of differential-architecture arrays based on an accurate and comprehensive Phase-Change Memory (PCM) device model.
We train a spiking RNN whose weights are emulated in the presented simulation framework, using a recently proposed e-prop learning rule.
arXiv Detail & Related papers (2021-08-04T01:24:17Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
We show how a novel type of adaptive spiking recurrent neural network (SRNN) is able to achieve state-of-the-art performance.
We calculate a $>$100x energy improvement for our SRNNs over classical RNNs on the harder tasks.
arXiv Detail & Related papers (2020-05-24T01:04:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.