RLEEGNet: Integrating Brain-Computer Interfaces with Adaptive AI for
Intuitive Responsiveness and High-Accuracy Motor Imagery Classification
- URL: http://arxiv.org/abs/2402.09465v1
- Date: Fri, 9 Feb 2024 02:03:13 GMT
- Title: RLEEGNet: Integrating Brain-Computer Interfaces with Adaptive AI for
Intuitive Responsiveness and High-Accuracy Motor Imagery Classification
- Authors: Sriram V.C. Nallani and Gautham Ramachandran
- Abstract summary: We introduce a framework that leverages Reinforcement Learning with Deep Q-Networks (DQN) for classification tasks.
We present a preprocessing technique for multiclass motor imagery (MI) classification in a One-Versus-The-Rest (OVR) manner.
The integration of DQN with a 1D-CNN-LSTM architecture optimize the decision-making process in real-time.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Current approaches to prosthetic control are limited by their reliance on
traditional methods, which lack real-time adaptability and intuitive
responsiveness. These limitations are particularly pronounced in assistive
technologies designed for individuals with diverse cognitive states and motor
intentions. In this paper, we introduce a framework that leverages
Reinforcement Learning (RL) with Deep Q-Networks (DQN) for classification
tasks. Additionally, we present a preprocessing technique using the Common
Spatial Pattern (CSP) for multiclass motor imagery (MI) classification in a
One-Versus-The-Rest (OVR) manner. The subsequent 'csp space' transformation
retains the temporal dimension of EEG signals, crucial for extracting
discriminative features. The integration of DQN with a 1D-CNN-LSTM architecture
optimizes the decision-making process in real-time, thereby enhancing the
system's adaptability to the user's evolving needs and intentions. We elaborate
on the data processing methods for two EEG motor imagery datasets. Our
innovative model, RLEEGNet, incorporates a 1D-CNN-LSTM architecture as the
Online Q-Network within the DQN, facilitating continuous adaptation and
optimization of control strategies through feedback. This mechanism allows the
system to learn optimal actions through trial and error, progressively
improving its performance. RLEEGNet demonstrates high accuracy in classifying
MI-EEG signals, achieving as high as 100% accuracy in MI tasks across both the
GigaScience (3-class) and BCI-IV-2a (4-class) datasets. These results highlight
the potential of combining DQN with a 1D-CNN-LSTM architecture to significantly
enhance the adaptability and responsiveness of BCI systems.
Related papers
- Automatically Learning Hybrid Digital Twins of Dynamical Systems [56.69628749813084]
Digital Twins (DTs) simulate the states and temporal dynamics of real-world systems.
DTs often struggle to generalize to unseen conditions in data-scarce settings.
In this paper, we propose an evolutionary algorithm ($textbfHDTwinGen$) to autonomously propose, evaluate, and optimize HDTwins.
arXiv Detail & Related papers (2024-10-31T07:28:22Z) - Resource-Efficient Sensor Fusion via System-Wide Dynamic Gated Neural Networks [16.0018681576301]
We propose a novel algorithmic strategy called Quantile-constrained Inference (QIC)
QIC makes joint, high-quality, swift decisions on all the above aspects of the system.
Our results confirm that QIC matches the optimum and outperforms its alternatives by over 80%.
arXiv Detail & Related papers (2024-10-22T06:12:04Z) - Efficient Intrusion Detection: Combining $χ^2$ Feature Selection with CNN-BiLSTM on the UNSW-NB15 Dataset [2.239394800147746]
Intrusion Detection Systems (IDSs) have played a significant role in the detection and prevention of cyber-attacks in traditional computing systems.
The limited computational resources available on Internet of Things (IoT) devices pose a challenge for deploying conventional computing-based IDSs.
We present an effective IDS model that addresses this issue by combining a lightweight Convolutional Neural Network (CNN) with bidirectional Long Short-Term Memory (BiLSTM)
arXiv Detail & Related papers (2024-07-20T17:41:16Z) - Towards Hyperparameter-Agnostic DNN Training via Dynamical System
Insights [4.513581513983453]
We present a first-order optimization method specialized for deep neural networks (DNNs), ECCO-DNN.
This method models the optimization variable trajectory as a dynamical system and develops a discretization algorithm that adaptively selects step sizes based on the trajectory's shape.
arXiv Detail & Related papers (2023-10-21T03:45:13Z) - Evolving Connectivity for Recurrent Spiking Neural Networks [8.80300633999542]
Recurrent neural networks (RSNNs) hold great potential for advancing artificial general intelligence.
We propose the evolving connectivity (EC) framework, an inference-only method for training RSNNs.
arXiv Detail & Related papers (2023-05-28T07:08:25Z) - TEMGNet: Deep Transformer-based Decoding of Upperlimb sEMG for Hand
Gestures Recognition [16.399230849853915]
We develop a framework based on the Transformer architecture for processing sEMG signals.
We propose a novel Vision Transformer (ViT)-based neural network architecture (referred to as the TEMGNet) to classify and recognize upperlimb hand gestures.
arXiv Detail & Related papers (2021-09-25T15:03:22Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z) - Neural Architecture Search For LF-MMI Trained Time Delay Neural Networks [61.76338096980383]
A range of neural architecture search (NAS) techniques are used to automatically learn two types of hyper- parameters of state-of-the-art factored time delay neural networks (TDNNs)
These include the DARTS method integrating architecture selection with lattice-free MMI (LF-MMI) TDNN training.
Experiments conducted on a 300-hour Switchboard corpus suggest the auto-configured systems consistently outperform the baseline LF-MMI TDNN systems.
arXiv Detail & Related papers (2020-07-17T08:32:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.