論文の概要: Tri-level Joint Natural Language Understanding for Multi-turn
Conversational Datasets
- arxiv url: http://arxiv.org/abs/2305.17729v1
- Date: Sun, 28 May 2023 13:59:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-30 16:56:19.538999
- Title: Tri-level Joint Natural Language Understanding for Multi-turn
Conversational Datasets
- Title(参考訳): マルチターン会話データセットのための三段階共同自然言語理解
- Authors: Henry Weld, Sijia Hu, Siqu Long, Josiah Poon, Soyeon Caren Han
- Abstract要約: 本稿では,新しい三段階共同自然言語理解手法,ドメインの追加,意味情報をすべてのレベル間で明示的に交換する手法を提案する。
我々は,2つのマルチターンデータセットを用いて,共同スロット充填とインテント検出を行った最初のモデルとして評価を行った。
- 参考スコア(独自算出の注目度): 5.3361357265365035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Natural language understanding typically maps single utterances to a dual
level semantic frame, sentence level intent and slot labels at the word level.
The best performing models force explicit interaction between intent detection
and slot filling. We present a novel tri-level joint natural language
understanding approach, adding domain, and explicitly exchange semantic
information between all levels. This approach enables the use of multi-turn
datasets which are a more natural conversational environment than single
utterance. We evaluate our model on two multi-turn datasets for which we are
the first to conduct joint slot-filling and intent detection. Our model
outperforms state-of-the-art joint models in slot filling and intent detection
on multi-turn data sets. We provide an analysis of explicit interaction
locations between the layers. We conclude that including domain information
improves model performance.
- Abstract(参考訳): 自然言語理解は通常、単語レベルでの単一発話を二重レベルの意味フレーム、文レベルの意図、スロットラベルにマッピングする。
最高のパフォーマンスモデルは、インテント検出とスロットフィリングの間の明示的な相互作用を強制する。
本稿では,新しい3レベル統合自然言語理解手法を提案し,ドメインを追加し,すべてのレベル間で意味情報を明示的に交換する。
このアプローチでは、単一発話よりも自然な会話環境であるマルチターンデータセットの使用を可能にする。
我々は,2つのマルチターンデータセットを用いて,共同スロット充填とインテント検出を行った最初のモデルとして評価を行った。
本モデルはマルチターンデータセットのスロット充填とインテント検出において最先端のジョイントモデルを上回る。
層間の明示的な相互作用の場所を解析する。
ドメイン情報を含むとモデルの性能が向上する。
関連論文リスト
- Bridging Local Details and Global Context in Text-Attributed Graphs [62.522550655068336]
GraphBridgeは、コンテキストテキスト情報を活用することで、ローカルおよびグローバルな視点をブリッジするフレームワークである。
提案手法は最先端性能を実現し,グラフ対応トークン削減モジュールは効率を大幅に向上し,スケーラビリティの問題を解消する。
論文 参考訳(メタデータ) (2024-06-18T13:35:25Z) - Exploring the Potential of Large Foundation Models for Open-Vocabulary HOI Detection [9.788417605537965]
条件付き多レベルデコードと細粒度セマンティックエンハンスメントを備えた新しいエンドツーエンドオープン語彙HOI検出フレームワークを提案する。
提案手法は,開語彙HOI検出の最先端化を実現する。
論文 参考訳(メタデータ) (2024-04-09T10:27:22Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
マルチモーダルエンティティリンクタスクは、マルチモーダル知識グラフへの曖昧な言及を解決することを目的としている。
MELタスクを解決するための新しいMulti-Grained Multimodal InteraCtion Network $textbf(MIMIC)$ frameworkを提案する。
論文 参考訳(メタデータ) (2023-07-19T02:11:19Z) - Syntax and Semantics Meet in the "Middle": Probing the Syntax-Semantics
Interface of LMs Through Agentivity [68.8204255655161]
このような相互作用を探索するためのケーススタディとして,作用性のセマンティックな概念を提示する。
これは、LMが言語アノテーション、理論テスト、発見のためのより有用なツールとして役立つ可能性を示唆している。
論文 参考訳(メタデータ) (2023-05-29T16:24:01Z) - Weakly Supervised Data Augmentation Through Prompting for Dialogue
Understanding [103.94325597273316]
本稿では,弱教師付きフィルタを適用して拡張品質を反復する手法を提案する。
我々は、デイリーダイアログにおける感情と行動の分類タスクと、Facebook Multilingual Task-Oriented Dialogueにおける意図の分類タスクについて評価した。
特にDailyDialogでは、真理データの10%を使用して、100%のデータを使用する現在の最先端モデルよりも優れています。
論文 参考訳(メタデータ) (2022-10-25T17:01:30Z) - MIntRec: A New Dataset for Multimodal Intent Recognition [18.45381778273715]
マルチモーダルな意図認識は,実世界のマルチモーダルシーンにおいて,人間の言語を理解する上で重要な課題である。
本稿では,この問題を解決するために,マルチモーダルな意図認識(MIntRec)のための新しいデータセットを提案する。
テレビシリーズ『スーパーストア』から収集されたデータに基づいて、粗くきめ細かな意図を定式化する。
論文 参考訳(メタデータ) (2022-09-09T15:37:39Z) - Distant finetuning with discourse relations for stance classification [55.131676584455306]
そこで本研究では,定位分類のモデルとして,原文から銀ラベルでデータを抽出し,微調整する手法を提案する。
また,様々な段階において微調整に用いるデータのノイズレベルが減少する3段階のトレーニングフレームワークを提案する。
NLPCC 2021共有タスクArgumentative Text Understanding for AI Debaterでは,26の競合チームの中で1位にランクインした。
論文 参考訳(メタデータ) (2022-04-27T04:24:35Z) - Learning to Select Context in a Hierarchical and Global Perspective for
Open-domain Dialogue Generation [15.01710843286394]
階層的自己保持機構と遠隔監視を備えた新しいモデルを提案し、関連する単語と発話を短距離および長距離で検出する。
私たちのモデルは、流速、コヒーレンス、および情報性の観点から他のベースラインを大幅に上回ります。
論文 参考訳(メタデータ) (2021-02-18T11:56:42Z) - Automatic Discovery of Novel Intents & Domains from Text Utterances [18.39942131996558]
本稿では,ラベルのない大量のデータから新しいドメインや意図を自動的に発見する新しいフレームワークADVINを提案する。
ADVINは3つのベンチマークデータセットのベースラインと、商用音声処理エージェントからの実際のユーザ発話を大きく上回る。
論文 参考訳(メタデータ) (2020-05-22T00:47:10Z) - AGIF: An Adaptive Graph-Interactive Framework for Joint Multiple Intent
Detection and Slot Filling [69.59096090788125]
本稿では,多目的検出とスロットフィリングを併用する適応グラフ対話フレームワーク(AGIF)を提案する。
スロットとインテントの強い相関関係をモデル化するために,インテント-スロットグラフ相互作用層を導入する。
このような相互作用層が各トークンに適応的に適用され、関連する意図情報を自動抽出する利点がある。
論文 参考訳(メタデータ) (2020-04-21T15:07:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。