Synthetic Aperture Radar Image Segmentation with Quantum Annealing
- URL: http://arxiv.org/abs/2305.17954v2
- Date: Thu, 4 Jan 2024 15:29:19 GMT
- Title: Synthetic Aperture Radar Image Segmentation with Quantum Annealing
- Authors: Timothe Presles, Cyrille Enderli, Gilles Burel and El Houssain
Baghious
- Abstract summary: In image processing, image segmentation is the process of partitioning a digital image into multiple image segment.
Currently, finding the optimal set of segments for a given image modeled as a MRF appears to be NP-hard.
We propose an hybrid quantum annealing classical optimization Expectation Maximization algorithm to obtain optimal sets of segments.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In image processing, image segmentation is the process of partitioning a
digital image into multiple image segment. Among state-of-the-art methods,
Markov Random Fields (MRF) can be used to model dependencies between pixels,
and achieve a segmentation by minimizing an associated cost function.
Currently, finding the optimal set of segments for a given image modeled as a
MRF appears to be NP-hard. In this paper, we aim to take advantage of the
exponential scalability of quantum computing to speed up the segmentation of
Synthetic Aperture Radar images. For that purpose, we propose an hybrid quantum
annealing classical optimization Expectation Maximization algorithm to obtain
optimal sets of segments. After proposing suitable formulations, we discuss the
performances and the scalability of our approach on the D-Wave quantum
computer. We also propose a short study of optimal computation parameters to
enlighten the limits and potential of the adiabatic quantum computation to
solve large instances of combinatorial optimization problems.
Related papers
- Optimizing Unitary Coupled Cluster Wave Functions on Quantum Hardware: Error Bound and Resource-Efficient Optimizer [0.0]
We study the projective quantum eigensolver (PQE) approach to optimizing unitary coupled cluster wave functions on quantum hardware.
The algorithm uses projections of the Schr"odinger equation to efficiently bring the trial state closer to an eigenstate of the Hamiltonian.
We present numerical evidence of superiority over both the optimization introduced in arXiv:2102.00345 and VQE optimized using the Broyden Fletcher Goldfarb Shanno (BFGS) method.
arXiv Detail & Related papers (2024-10-19T15:03:59Z) - Qubit-efficient Variational Quantum Algorithms for Image Segmentation [4.737806718785056]
Quantum computing is expected to transform a range of computational tasks beyond the reach of classical algorithms.
In this work, we examine the application of variational quantum algorithms (VQAs) for unsupervised image segmentation.
arXiv Detail & Related papers (2024-05-23T10:21:57Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
We propose a new methodology to design quantum hybrid diffusion models.
We propose two possible hybridization schemes combining quantum computing's superior generalization with classical networks' modularity.
arXiv Detail & Related papers (2024-02-25T16:57:51Z) - A Quantum Optimization Method for Geometric Constrained Image
Segmentation [1.190902280324485]
Quantum image processing is a growing field attracting attention from both the quantum computing and image processing communities.
We propose a novel method in combining a graph-theoretic approach for optimal surface segmentation and hybrid quantum-classical optimization of the problem-directed graph.
This work explores the use of quantum processors in image segmentation problems, which has important applications in medical image analysis.
arXiv Detail & Related papers (2023-10-31T03:41:21Z) - A Novel Approach to Threshold Quantum Images by using Unsharp
Measurements [0.8287206589886881]
We propose a hybrid quantum approach to threshold and binarize a grayscale image through unsharp measurements.
The proposed methodology uses peaks of the overlapping Gaussians and the distance between neighboring local minima as the variance.
The obtained thresholds are used to binarize a grayscale image by using novel enhanced quantum image representation integrated with a threshold encoder.
arXiv Detail & Related papers (2023-10-16T18:34:40Z) - A quantum segmentation algorithm based on local adaptive threshold for
NEQR image [7.798738743268923]
The complexity of our algorithm can be reduced to $O(n2+q)$, which is an exponential speedup compared to the classic counterparts.
The experiment is conducted on IBM Q to show the feasibility of our algorithm in the noisy intermediate-scale quantum (NISQ) era.
arXiv Detail & Related papers (2023-10-02T04:01:42Z) - Automatic and effective discovery of quantum kernels [43.702574335089736]
Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data.
We present a different approach, which employs optimization techniques, similar to those used in neural architecture search and AutoML.
The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach.
arXiv Detail & Related papers (2022-09-22T16:42:14Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
We propose to solve a model-based maximum-a-posterior problem to reconstruct multi-materials images with application to spectral CT.
In particular, we propose to solve a regularized optimization problem based on a plug-in image-denoising function.
We show numerical and experimental results for spectral CT materials decomposition.
arXiv Detail & Related papers (2021-03-25T15:20:10Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Kullback-Leibler Divergence-Based Fuzzy $C$-Means Clustering
Incorporating Morphological Reconstruction and Wavelet Frames for Image
Segmentation [152.609322951917]
We come up with a Kullback-Leibler (KL) divergence-based Fuzzy C-Means (FCM) algorithm by incorporating a tight wavelet frame transform and a morphological reconstruction operation.
The proposed algorithm works well and comes with better segmentation performance than other comparative algorithms.
arXiv Detail & Related papers (2020-02-21T05:19:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.