Crafting Training Degradation Distribution for the
Accuracy-Generalization Trade-off in Real-World Super-Resolution
- URL: http://arxiv.org/abs/2305.18107v2
- Date: Thu, 1 Jun 2023 05:17:58 GMT
- Title: Crafting Training Degradation Distribution for the
Accuracy-Generalization Trade-off in Real-World Super-Resolution
- Authors: Ruofan Zhang, Jinjin Gu, Haoyu Chen, Chao Dong, Yulun Zhang, Wenming
Yang
- Abstract summary: We introduce a novel approach to craft training degradation distributions using a small set of reference images.
Our results indicate that the proposed technique significantly improves the performance of test images while preserving generalization capabilities in real-world applications.
- Score: 53.0437282872811
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Super-resolution (SR) techniques designed for real-world applications
commonly encounter two primary challenges: generalization performance and
restoration accuracy. We demonstrate that when methods are trained using
complex, large-range degradations to enhance generalization, a decline in
accuracy is inevitable. However, since the degradation in a certain real-world
applications typically exhibits a limited variation range, it becomes feasible
to strike a trade-off between generalization performance and testing accuracy
within this scope. In this work, we introduce a novel approach to craft
training degradation distributions using a small set of reference images. Our
strategy is founded upon the binned representation of the degradation space and
the Fr\'echet distance between degradation distributions. Our results indicate
that the proposed technique significantly improves the performance of test
images while preserving generalization capabilities in real-world applications.
Related papers
- AGLLDiff: Guiding Diffusion Models Towards Unsupervised Training-free Real-world Low-light Image Enhancement [37.274077278901494]
We propose the Attribute Guidance Diffusion framework (AGLLDiff) for effective real-world LIE.
AGLLDiff shifts the paradigm and models the desired attributes, such as image exposure, structure and color of normal-light images.
Our approach outperforms the current leading unsupervised LIE methods across benchmarks in terms of distortion-based and perceptual-based metrics.
arXiv Detail & Related papers (2024-07-20T15:17:48Z) - Pairwise Distance Distillation for Unsupervised Real-World Image Super-Resolution [38.79439380482431]
Real-world super-resolution (RWSR) faces unknown degradations in the low-resolution inputs, all the while lacking paired training data.
Existing methods approach this problem by learning blind general models through complex synthetic augmentations on training inputs.
We introduce a novel pairwise distance distillation framework to address the unsupervised RWSR for a targeted real-world degradation.
arXiv Detail & Related papers (2024-07-10T01:46:40Z) - Towards Realistic Data Generation for Real-World Super-Resolution [58.88039242455039]
RealDGen is an unsupervised learning data generation framework designed for real-world super-resolution.
We develop content and degradation extraction strategies, which are integrated into a novel content-degradation decoupled diffusion model.
Experiments demonstrate that RealDGen excels in generating large-scale, high-quality paired data that mirrors real-world degradations.
arXiv Detail & Related papers (2024-06-11T13:34:57Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
We propose a novel SR method called MPF-Net that leverages multiple perceptual features of input images.
Our method incorporates a Multi-Perception Feature Extraction (MPFE) module to extract diverse perceptual information.
We also introduce a contrastive regularization term (CR) that improves the model's learning capability.
arXiv Detail & Related papers (2023-05-26T07:35:49Z) - Exploiting Diffusion Prior for Real-World Image Super-Resolution [75.5898357277047]
We present a novel approach to leverage prior knowledge encapsulated in pre-trained text-to-image diffusion models for blind super-resolution.
By employing our time-aware encoder, we can achieve promising restoration results without altering the pre-trained synthesis model.
arXiv Detail & Related papers (2023-05-11T17:55:25Z) - Global-Local Regularization Via Distributional Robustness [26.983769514262736]
Deep neural networks are often vulnerable to adversarial examples and distribution shifts.
Recent approaches leverage distributional robustness optimization (DRO) to find the most challenging distribution.
We propose a novel regularization technique, following the veins of Wasserstein-based DRO framework.
arXiv Detail & Related papers (2022-03-01T15:36:12Z) - Generalized Real-World Super-Resolution through Adversarial Robustness [107.02188934602802]
We present Robust Super-Resolution, a method that leverages the generalization capability of adversarial attacks to tackle real-world SR.
Our novel framework poses a paradigm shift in the development of real-world SR methods.
By using a single robust model, we outperform state-of-the-art specialized methods on real-world benchmarks.
arXiv Detail & Related papers (2021-08-25T22:43:20Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.