Towards Realistic Data Generation for Real-World Super-Resolution
- URL: http://arxiv.org/abs/2406.07255v3
- Date: Mon, 21 Oct 2024 11:57:29 GMT
- Title: Towards Realistic Data Generation for Real-World Super-Resolution
- Authors: Long Peng, Wenbo Li, Renjing Pei, Jingjing Ren, Yang Wang, Yang Cao, Zheng-Jun Zha,
- Abstract summary: RealDGen is an unsupervised learning data generation framework designed for real-world super-resolution.
We develop content and degradation extraction strategies, which are integrated into a novel content-degradation decoupled diffusion model.
Experiments demonstrate that RealDGen excels in generating large-scale, high-quality paired data that mirrors real-world degradations.
- Score: 58.88039242455039
- License:
- Abstract: Existing image super-resolution (SR) techniques often fail to generalize effectively in complex real-world settings due to the significant divergence between training data and practical scenarios. To address this challenge, previous efforts have either manually simulated intricate physical-based degradations or utilized learning-based techniques, yet these approaches remain inadequate for producing large-scale, realistic, and diverse data simultaneously. In this paper, we introduce a novel Realistic Decoupled Data Generator (RealDGen), an unsupervised learning data generation framework designed for real-world super-resolution. We meticulously develop content and degradation extraction strategies, which are integrated into a novel content-degradation decoupled diffusion model to create realistic low-resolution images from unpaired real LR and HR images. Extensive experiments demonstrate that RealDGen excels in generating large-scale, high-quality paired data that mirrors real-world degradations, significantly advancing the performance of popular SR models on various real-world benchmarks.
Related papers
- Enhanced Super-Resolution Training via Mimicked Alignment for Real-World Scenes [51.92255321684027]
We propose a novel plug-and-play module designed to mitigate misalignment issues by aligning LR inputs with HR images during training.
Specifically, our approach involves mimicking a novel LR sample that aligns with HR while preserving the characteristics of the original LR samples.
We comprehensively evaluate our method on synthetic and real-world datasets, demonstrating its effectiveness across a spectrum of SR models.
arXiv Detail & Related papers (2024-10-07T18:18:54Z) - Pairwise Distance Distillation for Unsupervised Real-World Image Super-Resolution [38.79439380482431]
Real-world super-resolution (RWSR) faces unknown degradations in the low-resolution inputs, all the while lacking paired training data.
Existing methods approach this problem by learning blind general models through complex synthetic augmentations on training inputs.
We introduce a novel pairwise distance distillation framework to address the unsupervised RWSR for a targeted real-world degradation.
arXiv Detail & Related papers (2024-07-10T01:46:40Z) - Teacher-Student Network for Real-World Face Super-Resolution with Progressive Embedding of Edge Information [2.280954956645056]
A real-world face super-resolution teacher-student model is proposed, which considers the domain gap between real and synthetic data.
Our proposed approach surpasses state-of-the-art methods in obtaining high-quality face images for real-world FSR.
arXiv Detail & Related papers (2024-05-08T02:48:52Z) - Learning Dual-Level Deformable Implicit Representation for Real-World Scale Arbitrary Super-Resolution [81.74583887661794]
We build a new real-world super-resolution benchmark with both integer and non-integer scaling factors.
We propose a Dual-level Deformable Implicit Representation (DDIR) to solve real-world scale arbitrary super-resolution.
Our trained model achieves state-of-the-art performance on the RealArbiSR and RealSR benchmarks for real-world scale arbitrary super-resolution.
arXiv Detail & Related papers (2024-03-16T13:44:42Z) - Low-Res Leads the Way: Improving Generalization for Super-Resolution by
Self-Supervised Learning [45.13580581290495]
This work introduces a novel "Low-Res Leads the Way" (LWay) training framework to enhance the adaptability of SR models to real-world images.
Our approach utilizes a low-resolution (LR) reconstruction network to extract degradation embeddings from LR images, merging them with super-resolved outputs for LR reconstruction.
Our training regime is universally compatible, requiring no network architecture modifications, making it a practical solution for real-world SR applications.
arXiv Detail & Related papers (2024-03-05T02:29:18Z) - Benchmark Dataset and Effective Inter-Frame Alignment for Real-World
Video Super-Resolution [65.20905703823965]
Video super-resolution (VSR) aiming to reconstruct a high-resolution (HR) video from its low-resolution (LR) counterpart has made tremendous progress in recent years.
It remains challenging to deploy existing VSR methods to real-world data with complex degradations.
EAVSR takes the proposed multi-layer adaptive spatial transform network (MultiAdaSTN) to refine the offsets provided by the pre-trained optical flow estimation network.
arXiv Detail & Related papers (2022-12-10T17:41:46Z) - Real-World Image Super-Resolution by Exclusionary Dual-Learning [98.36096041099906]
Real-world image super-resolution is a practical image restoration problem that aims to obtain high-quality images from in-the-wild input.
Deep learning-based methods have achieved promising restoration quality on real-world image super-resolution datasets.
We propose Real-World image Super-Resolution by Exclusionary Dual-Learning (RWSR-EDL) to address the feature diversity in perceptual- and L1-based cooperative learning.
arXiv Detail & Related papers (2022-06-06T13:28:15Z) - Generalized Real-World Super-Resolution through Adversarial Robustness [107.02188934602802]
We present Robust Super-Resolution, a method that leverages the generalization capability of adversarial attacks to tackle real-world SR.
Our novel framework poses a paradigm shift in the development of real-world SR methods.
By using a single robust model, we outperform state-of-the-art specialized methods on real-world benchmarks.
arXiv Detail & Related papers (2021-08-25T22:43:20Z) - Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure
Synthetic Data [17.529045507657944]
We extend the powerful ESRGAN to a practical restoration application (namely, Real-ESRGAN)
A high-order degradation modeling process is introduced to better simulate complex real-world degradations.
We also consider the common ringing and overshoot artifacts in the synthesis process.
arXiv Detail & Related papers (2021-07-22T17:43:24Z) - Joint Generative Learning and Super-Resolution For Real-World
Camera-Screen Degradation [6.14297871633911]
In real-world single image super-resolution (SISR) task, the low-resolution image suffers more complicated degradations.
In this paper, we focus on the camera-screen degradation and build a real-world dataset (Cam-ScreenSR)
We propose a joint two-stage model. Firstly, the downsampling degradation GAN(DD-GAN) is trained to model the degradation and produces more various of LR images.
Then the dual residual channel attention network (DuRCAN) learns to recover the SR image.
arXiv Detail & Related papers (2020-08-01T07:10:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.