$U(N)$ gauge theory in the strong coupling limit on a quantum annealer
- URL: http://arxiv.org/abs/2305.18179v3
- Date: Mon, 17 Jul 2023 13:27:04 GMT
- Title: $U(N)$ gauge theory in the strong coupling limit on a quantum annealer
- Authors: Jangho Kim and Thomas Luu and Wolfgang Unger
- Abstract summary: Lattice QCD in the strong coupling regime can be formulated in dual variables which are integer-valued.
It can be efficiently simulated for modest finite temperatures and finite densities via the worm, circumventing the finite density sign problem in this regime.
As the partition function is solely expressed in terms of integers, it can be cast as a quantum optimization problem that can be solved on a quantum annealer.
- Score: 6.875312133832079
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lattice QCD in the strong coupling regime can be formulated in dual variables
which are integer-valued. It can be efficiently simulated for modest finite
temperatures and finite densities via the worm algorithm, circumventing the
finite density sign problem in this regime. However, the low temperature regime
is more expensive to address. As the partition function is solely expressed in
terms of integers, it can be cast as a combinatorial optimization problem that
can be solved on a quantum annealer. We will first explain the setup of the
system we want to study, and then present its reformulation suitable for a
quantum annealer, and in particular the D-Wave. As a proof of concept, we
present first results obtained on D-Wave for gauge group $U(1)$ and $U(3)$, and
outline the next steps towards gauge groups $SU(3)$. We find that in addition,
histogram reweighting greatly improves the accuracy of our observables when
compared to analytic results.
Related papers
- An Analysis of Quantum Annealing Algorithms for Solving the Maximum Clique Problem [49.1574468325115]
We analyse the ability of quantum D-Wave annealers to find the maximum clique on a graph, expressed as a QUBO problem.
We propose a decomposition algorithm for the complementary maximum independent set problem, and a graph generation algorithm to control the number of nodes, the number of cliques, the density, the connectivity indices and the ratio of the solution size to the number of other nodes.
arXiv Detail & Related papers (2024-06-11T04:40:05Z) - Testing importance sampling on a quantum annealer for strong coupling
SU(3) gauge theory [7.274325784456261]
We demonstrate how the D-wave quantum annealer can perform importance sampling on $U(N_c)$ gauge theory.
In addition to causing a sign problem in importance sampling, baryon loops induce a complex QUBO matrix which cannot be optimized by the D-Wave annealer.
arXiv Detail & Related papers (2023-11-13T10:10:13Z) - GRAPE optimization for open quantum systems with time-dependent
decoherence rates driven by coherent and incoherent controls [77.34726150561087]
The GRadient Ascent Pulse Engineering (GRAPE) method is widely used for optimization in quantum control.
We adopt GRAPE method for optimizing objective functionals for open quantum systems driven by both coherent and incoherent controls.
The efficiency of the algorithm is demonstrated through numerical simulations for the state-to-state transition problem.
arXiv Detail & Related papers (2023-07-17T13:37:18Z) - Simulating $\mathbb{Z}_2$ Lattice Gauge Theory with the Variational
Quantum Thermalizer [0.6165163123577484]
We apply a variational quantum algorithm to a low-dimensional model which has a local abelian gauge symmetry.
We demonstrate how this approach can be applied to obtain information regarding the phase diagram as well as unequal-time correlation functions at non-zero temperature.
arXiv Detail & Related papers (2023-06-09T17:32:37Z) - Quantum dichotomies and coherent thermodynamics beyond first-order asymptotics [9.437165725355701]
We address the problem of exact and approximate transformation of quantum dichotomies in the thermodynamic regime.
We derive second-order expressions for the optimal transformation rate $R_n$ in the small, moderate, and large deviation error regimes.
What is more, our result on quantum dichotomies can also be used to obtain, up to second-order terms, optimal conversion rates between pure bipartite entangled states under local operations and classical communication.
arXiv Detail & Related papers (2023-03-09T19:00:01Z) - Even shorter quantum circuit for phase estimation on early
fault-tolerant quantum computers with applications to ground-state energy
estimation [5.746732081406236]
We develop a phase estimation method with a distinct feature.
The total cost of the algorithm satisfies the Heisenberg-limited scaling $widetildemathcalO(epsilon-1)$.
Our algorithm may significantly reduce the circuit depth for performing phase estimation tasks on early fault-tolerant quantum computers.
arXiv Detail & Related papers (2022-11-22T03:15:40Z) - Structural aspects of FRG in quantum tunnelling computations [68.8204255655161]
We probe both the unidimensional quartic harmonic oscillator and the double well potential.
Two partial differential equations for the potential V_k(varphi) and the wave function renormalization Z_k(varphi) are studied.
arXiv Detail & Related papers (2022-06-14T15:23:25Z) - The Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) Equation for
Two-Dimensional Systems [62.997667081978825]
Open quantum systems can obey the Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) equation.
We exhaustively study the case of a Hilbert space dimension of $2$.
arXiv Detail & Related papers (2022-04-16T07:03:54Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
This work provides a general framework for the non-asymotic analysis of sampling error in 2-Wasserstein distance.
Our theoretical analysis is further validated by numerical experiments.
arXiv Detail & Related papers (2021-09-08T18:00:05Z) - Entanglement Production and Convergence Properties of the Variational
Quantum Eigensolver [0.0]
We use the Variational Quantum Eigensolver (VQE) algorithm to determine the ground state energies of two-dimensional model fermionic systems.
In particular, we focus on the nature of the entangler blocks which provide the most efficient convergence to the system ground state.
We show that the number of gates required to reach a solution within an error follows the Solovay-Kitaev scaling.
arXiv Detail & Related papers (2020-03-27T15:44:56Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.