Kernel Density Matrices for Probabilistic Deep Learning
- URL: http://arxiv.org/abs/2305.18204v3
- Date: Tue, 30 Apr 2024 17:54:43 GMT
- Title: Kernel Density Matrices for Probabilistic Deep Learning
- Authors: Fabio A. González, Raúl Ramos-Pollán, Joseph A. Gallego-Mejia,
- Abstract summary: In quantum mechanics, a density matrix is the most general way to describe the state of a quantum system.
This paper introduces a novel approach to probabilistic deep learning, kernel density matrices.
It provides a simpler yet effective mechanism for representing joint probability distributions of both continuous and discrete random variables.
- Score: 8.486487001779416
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces a novel approach to probabilistic deep learning, kernel density matrices, which provide a simpler yet effective mechanism for representing joint probability distributions of both continuous and discrete random variables. In quantum mechanics, a density matrix is the most general way to describe the state of a quantum system. This work extends the concept of density matrices by allowing them to be defined in a reproducing kernel Hilbert space. This abstraction allows the construction of differentiable models for density estimation, inference, and sampling, and enables their integration into end-to-end deep neural models. In doing so, we provide a versatile representation of marginal and joint probability distributions that allows us to develop a differentiable, compositional, and reversible inference procedure that covers a wide range of machine learning tasks, including density estimation, discriminative learning, and generative modeling. The broad applicability of the framework is illustrated by two examples: an image classification model that can be naturally transformed into a conditional generative model, and a model for learning with label proportions that demonstrates the framework's ability to deal with uncertainty in the training samples. The framework is implemented as a library and is available at: https://github.com/fagonzalezo/kdm.
Related papers
- BGDB: Bernoulli-Gaussian Decision Block with Improved Denoising Diffusion Probabilistic Models [8.332734198630813]
Generative models can enhance discriminative classifiers by constructing complex feature spaces.
We propose the Bernoulli-Gaussian Decision Block (BGDB), a novel module inspired by the Central Limit Theorem.
Specifically, we utilize Improved Denoising Diffusion Probabilistic Models (IDDPM) to model the probability of Bernoulli Trials.
arXiv Detail & Related papers (2024-09-19T22:52:55Z) - Kernel Density Estimation for Multiclass Quantification [52.419589623702336]
Quantification is the supervised machine learning task concerned with obtaining accurate predictors of class prevalence.
The distribution-matching (DM) approaches represent one of the most important families among the quantification methods that have been proposed in the literature so far.
We propose a new representation mechanism based on multivariate densities that we model via kernel density estimation (KDE)
arXiv Detail & Related papers (2023-12-31T13:19:27Z) - TERM Model: Tensor Ring Mixture Model for Density Estimation [48.622060998018206]
In this paper, we take tensor ring decomposition for density estimator, which significantly reduces the number of permutation candidates.
A mixture model that incorporates multiple permutation candidates with adaptive weights is further designed, resulting in increased expressive flexibility.
This approach acknowledges that suboptimal permutations can offer distinctive information besides that of optimal permutations.
arXiv Detail & Related papers (2023-12-13T11:39:56Z) - Multi-scale Diffusion Denoised Smoothing [79.95360025953931]
randomized smoothing has become one of a few tangible approaches that offers adversarial robustness to models at scale.
We present scalable methods to address the current trade-off between certified robustness and accuracy in denoised smoothing.
Our experiments show that the proposed multi-scale smoothing scheme combined with diffusion fine-tuning enables strong certified robustness available with high noise level.
arXiv Detail & Related papers (2023-10-25T17:11:21Z) - HyperSINDy: Deep Generative Modeling of Nonlinear Stochastic Governing
Equations [5.279268784803583]
We introduce HyperSINDy, a framework for modeling dynamics via a deep generative model of sparse governing equations from data.
Once trained, HyperSINDy generates dynamics via a differential equation whose coefficients are driven by a white noise.
In experiments, HyperSINDy recovers ground truth governing equations, with learnedity scaling to match that of the data.
arXiv Detail & Related papers (2023-10-07T14:41:59Z) - Meta-Learning for Relative Density-Ratio Estimation [59.75321498170363]
Existing methods for (relative) density-ratio estimation (DRE) require many instances from both densities.
We propose a meta-learning method for relative DRE, which estimates the relative density-ratio from a few instances by using knowledge in related datasets.
We empirically demonstrate the effectiveness of the proposed method by using three problems: relative DRE, dataset comparison, and outlier detection.
arXiv Detail & Related papers (2021-07-02T02:13:45Z) - Marginalizable Density Models [14.50261153230204]
We present a novel deep network architecture which provides closed form expressions for the probabilities, marginals and conditionals of any subset of the variables.
The model also allows for parallelized sampling with only a logarithmic dependence of the time complexity on the number of variables.
arXiv Detail & Related papers (2021-06-08T23:54:48Z) - Learning with Density Matrices and Random Features [44.98964870180375]
A density matrix describes the statistical state of a quantum system.
It is a powerful formalism to represent both the quantum and classical uncertainty of quantum systems.
This paper explores how density matrices can be used as a building block for machine learning models.
arXiv Detail & Related papers (2021-02-08T17:54:59Z) - Deep Archimedean Copulas [98.96141706464425]
ACNet is a novel differentiable neural network architecture that enforces structural properties.
We show that ACNet is able to both approximate common Archimedean Copulas and generate new copulas which may provide better fits to data.
arXiv Detail & Related papers (2020-12-05T22:58:37Z) - Variational Mixture of Normalizing Flows [0.0]
Deep generative models, such as generative adversarial networks autociteGAN, variational autoencoders autocitevaepaper, and their variants, have seen wide adoption for the task of modelling complex data distributions.
Normalizing flows have overcome this limitation by leveraging the change-of-suchs formula for probability density functions.
The present work overcomes this by using normalizing flows as components in a mixture model and devising an end-to-end training procedure for such a model.
arXiv Detail & Related papers (2020-09-01T17:20:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.