BGDB: Bernoulli-Gaussian Decision Block with Improved Denoising Diffusion Probabilistic Models
- URL: http://arxiv.org/abs/2409.13116v1
- Date: Thu, 19 Sep 2024 22:52:55 GMT
- Title: BGDB: Bernoulli-Gaussian Decision Block with Improved Denoising Diffusion Probabilistic Models
- Authors: Chengkun Sun, Jinqian Pan, Russell Stevens Terry, Jiang Bian, Jie Xu,
- Abstract summary: Generative models can enhance discriminative classifiers by constructing complex feature spaces.
We propose the Bernoulli-Gaussian Decision Block (BGDB), a novel module inspired by the Central Limit Theorem.
Specifically, we utilize Improved Denoising Diffusion Probabilistic Models (IDDPM) to model the probability of Bernoulli Trials.
- Score: 8.332734198630813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative models can enhance discriminative classifiers by constructing complex feature spaces, thereby improving performance on intricate datasets. Conventional methods typically augment datasets with more detailed feature representations or increase dimensionality to make nonlinear data linearly separable. Utilizing a generative model solely for feature space processing falls short of unlocking its full potential within a classifier and typically lacks a solid theoretical foundation. We base our approach on a novel hypothesis: the probability information (logit) derived from a single model training can be used to generate the equivalent of multiple training sessions. Leveraging the central limit theorem, this synthesized probability information is anticipated to converge toward the true probability more accurately. To achieve this goal, we propose the Bernoulli-Gaussian Decision Block (BGDB), a novel module inspired by the Central Limit Theorem and the concept that the mean of multiple Bernoulli trials approximates the probability of success in a single trial. Specifically, we utilize Improved Denoising Diffusion Probabilistic Models (IDDPM) to model the probability of Bernoulli Trials. Our approach shifts the focus from reconstructing features to reconstructing logits, transforming the logit from a single iteration into logits analogous to those from multiple experiments. We provide the theoretical foundations of our approach through mathematical analysis and validate its effectiveness through experimental evaluation using various datasets for multiple imaging tasks, including both classification and segmentation.
Related papers
- A Likelihood Based Approach to Distribution Regression Using Conditional Deep Generative Models [6.647819824559201]
We study the large-sample properties of a likelihood-based approach for estimating conditional deep generative models.
Our results lead to the convergence rate of a sieve maximum likelihood estimator for estimating the conditional distribution.
arXiv Detail & Related papers (2024-10-02T20:46:21Z) - Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
Denoising Diffusion Probabilistic Models (DDPMs) represent a contemporary class of generative models with exceptional qualities.
We build a novel generative model for link prediction using a dedicated design to decompose the likelihood estimation process via the Bayesian formula.
Our proposed method presents numerous advantages: (1) transferability across datasets without retraining, (2) promising generalization on limited training data, and (3) robustness against graph adversarial attacks.
arXiv Detail & Related papers (2024-09-13T02:23:55Z) - A Diffusion Model Framework for Unsupervised Neural Combinatorial Optimization [7.378582040635655]
Current deep learning approaches rely on generative models that yield exact sample likelihoods.
This work introduces a method that lifts this restriction and opens the possibility to employ highly expressive latent variable models.
We experimentally validate our approach in data-free Combinatorial Optimization and demonstrate that our method achieves a new state-of-the-art on a wide range of benchmark problems.
arXiv Detail & Related papers (2024-06-03T17:55:02Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
We develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models.
In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach.
arXiv Detail & Related papers (2023-06-15T16:30:08Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
We introduce a powerful model-class namely "Denoising Diffusion Probabilistic Models" or DDPMs for chirographic data.
Our model named "ChiroDiff", being non-autoregressive, learns to capture holistic concepts and therefore remains resilient to higher temporal sampling rate.
arXiv Detail & Related papers (2023-04-07T15:17:48Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Learning Multivariate CDFs and Copulas using Tensor Factorization [39.24470798045442]
Learning the multivariate distribution of data is a core challenge in statistics and machine learning.
In this work, we aim to learn multivariate cumulative distribution functions (CDFs), as they can handle mixed random variables.
We show that any grid sampled version of a joint CDF of mixed random variables admits a universal representation as a naive Bayes model.
We demonstrate the superior performance of the proposed model in several synthetic and real datasets and applications including regression, sampling and data imputation.
arXiv Detail & Related papers (2022-10-13T16:18:46Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - Parsimony-Enhanced Sparse Bayesian Learning for Robust Discovery of
Partial Differential Equations [5.584060970507507]
A Parsimony Enhanced Sparse Bayesian Learning (PeSBL) method is developed for discovering the governing Partial Differential Equations (PDEs) of nonlinear dynamical systems.
Results of numerical case studies indicate that the governing PDEs of many canonical dynamical systems can be correctly identified using the proposed PeSBL method.
arXiv Detail & Related papers (2021-07-08T00:56:11Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.