Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo
- URL: http://arxiv.org/abs/2305.18246v2
- Date: Mon, 18 Mar 2024 00:37:12 GMT
- Title: Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo
- Authors: Haque Ishfaq, Qingfeng Lan, Pan Xu, A. Rupam Mahmood, Doina Precup, Anima Anandkumar, Kamyar Azizzadenesheli,
- Abstract summary: We present a scalable and effective exploration strategy based on Thompson sampling for reinforcement learning (RL)
We instead directly sample the Q function from its posterior distribution, by using Langevin Monte Carlo.
Our approach achieves better or similar results compared with state-of-the-art deep RL algorithms on several challenging exploration tasks from the Atari57 suite.
- Score: 104.9535542833054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a scalable and effective exploration strategy based on Thompson sampling for reinforcement learning (RL). One of the key shortcomings of existing Thompson sampling algorithms is the need to perform a Gaussian approximation of the posterior distribution, which is not a good surrogate in most practical settings. We instead directly sample the Q function from its posterior distribution, by using Langevin Monte Carlo, an efficient type of Markov Chain Monte Carlo (MCMC) method. Our method only needs to perform noisy gradient descent updates to learn the exact posterior distribution of the Q function, which makes our approach easy to deploy in deep RL. We provide a rigorous theoretical analysis for the proposed method and demonstrate that, in the linear Markov decision process (linear MDP) setting, it has a regret bound of $\tilde{O}(d^{3/2}H^{3/2}\sqrt{T})$, where $d$ is the dimension of the feature mapping, $H$ is the planning horizon, and $T$ is the total number of steps. We apply this approach to deep RL, by using Adam optimizer to perform gradient updates. Our approach achieves better or similar results compared with state-of-the-art deep RL algorithms on several challenging exploration tasks from the Atari57 suite.
Related papers
- Model-Based Reinforcement Learning with Multinomial Logistic Function Approximation [10.159501412046508]
We study model-based reinforcement learning (RL) for episodic Markov decision processes (MDP)
We establish a provably efficient RL algorithm for the MDP whose state transition is given by a multinomial logistic model.
To the best of our knowledge, this is the first model-based RL algorithm with multinomial logistic function approximation with provable guarantees.
arXiv Detail & Related papers (2022-12-27T16:25:09Z) - Langevin Monte Carlo for Contextual Bandits [72.00524614312002]
Langevin Monte Carlo Thompson Sampling (LMC-TS) is proposed to directly sample from the posterior distribution in contextual bandits.
We prove that the proposed algorithm achieves the same sublinear regret bound as the best Thompson sampling algorithms for a special case of contextual bandits.
arXiv Detail & Related papers (2022-06-22T17:58:23Z) - Provably Efficient Offline Reinforcement Learning with Trajectory-Wise
Reward [66.81579829897392]
We propose a novel offline reinforcement learning algorithm called Pessimistic vAlue iteRaTion with rEward Decomposition (PARTED)
PARTED decomposes the trajectory return into per-step proxy rewards via least-squares-based reward redistribution, and then performs pessimistic value based on the learned proxy reward.
To the best of our knowledge, PARTED is the first offline RL algorithm that is provably efficient in general MDP with trajectory-wise reward.
arXiv Detail & Related papers (2022-06-13T19:11:22Z) - Human-in-the-loop: Provably Efficient Preference-based Reinforcement
Learning with General Function Approximation [107.54516740713969]
We study human-in-the-loop reinforcement learning (RL) with trajectory preferences.
Instead of receiving a numeric reward at each step, the agent only receives preferences over trajectory pairs from a human overseer.
We propose the first optimistic model-based algorithm for PbRL with general function approximation.
arXiv Detail & Related papers (2022-05-23T09:03:24Z) - Reward-Free RL is No Harder Than Reward-Aware RL in Linear Markov
Decision Processes [61.11090361892306]
Reward-free reinforcement learning (RL) considers the setting where the agent does not have access to a reward function during exploration.
We show that this separation does not exist in the setting of linear MDPs.
We develop a computationally efficient algorithm for reward-free RL in a $d$-dimensional linear MDP.
arXiv Detail & Related papers (2022-01-26T22:09:59Z) - Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free
Reinforcement Learning [52.76230802067506]
A novel model-free algorithm is proposed to minimize regret in episodic reinforcement learning.
The proposed algorithm employs an em early-settled reference update rule, with the aid of two Q-learning sequences.
The design principle of our early-settled variance reduction method might be of independent interest to other RL settings.
arXiv Detail & Related papers (2021-10-09T21:13:48Z) - Model-based Reinforcement Learning for Continuous Control with Posterior
Sampling [10.91557009257615]
We study model-based posterior sampling for reinforcement learning (PSRL) in continuous state-action spaces.
We present MPC-PSRL, a model-based posterior sampling algorithm with model predictive control for action selection.
arXiv Detail & Related papers (2020-11-20T21:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.