論文の概要: Photoswap: Personalized Subject Swapping in Images
- arxiv url: http://arxiv.org/abs/2305.18286v1
- Date: Mon, 29 May 2023 17:56:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-30 13:32:47.244285
- Title: Photoswap: Personalized Subject Swapping in Images
- Title(参考訳): photowap:パーソナライズされた被写体を画像で入れ替える
- Authors: Jing Gu, Yilin Wang, Nanxuan Zhao, Tsu-Jui Fu, Wei Xiong, Qing Liu,
Zhifei Zhang, He Zhang, Jianming Zhang, HyunJoon Jung, Xin Eric Wang
- Abstract要約: Photowapは参照画像から対象の視覚概念を学習し、事前訓練された拡散モデルを用いて対象画像に置き換える。
Photowapは、被験者のスワップ、背景保存、全体的な品質において、人間の評価におけるベースラインの手法を著しく上回っている。
- 参考スコア(独自算出の注目度): 56.2650908740358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In an era where images and visual content dominate our digital landscape, the
ability to manipulate and personalize these images has become a necessity.
Envision seamlessly substituting a tabby cat lounging on a sunlit window sill
in a photograph with your own playful puppy, all while preserving the original
charm and composition of the image. We present Photoswap, a novel approach that
enables this immersive image editing experience through personalized subject
swapping in existing images. Photoswap first learns the visual concept of the
subject from reference images and then swaps it into the target image using
pre-trained diffusion models in a training-free manner. We establish that a
well-conceptualized visual subject can be seamlessly transferred to any image
with appropriate self-attention and cross-attention manipulation, maintaining
the pose of the swapped subject and the overall coherence of the image.
Comprehensive experiments underscore the efficacy and controllability of
Photoswap in personalized subject swapping. Furthermore, Photoswap
significantly outperforms baseline methods in human ratings across subject
swapping, background preservation, and overall quality, revealing its vast
application potential, from entertainment to professional editing.
- Abstract(参考訳): 画像と視覚コンテンツが私たちのデジタルランドスケープを支配している時代には、これらの画像の操作とパーソナライズが不可欠になっている。
写真の中で、自分の遊び心のある子犬と一緒に、太陽に照らされた窓にくつろいでいるタブビーキャットをシームレスに置換し、元の魅力と構成を保存することを想像してください。
既存の画像にパーソナライズされた被写体をスワップすることで、没入的な画像編集体験を可能にする新しいアプローチであるPhotoswapを提案する。
Photowapはまず参照画像から対象の視覚概念を学習し、トレーニング不要な方法で事前学習した拡散モデルを用いて対象画像に置き換える。
良好な認識された視覚被写体を任意の画像にシームレスに、適切な自己着脱と相互着脱操作で移すことができ、被写体のポーズと画像全体のコヒーレンスを維持することができる。
パーソナライズされた被験者交換におけるphotowapの有効性と制御可能性に関する総合実験
さらに、photoswapは、被写体交換、背景保存、全体的な品質において、人間の評価におけるベースラインの方法を大幅に上回っており、エンターテイメントからプロの編集まで、幅広い応用可能性を示している。
関連論文リスト
- SwapAnything: Enabling Arbitrary Object Swapping in Personalized Visual Editing [51.857176097841915]
SwapAnythingは、イメージ内の任意のオブジェクトを参照によって与えられるパーソナライズされた概念に置き換えることのできる、新しいフレームワークである。
1)主主題ではなく任意の対象や部分の精密な制御,(2)コンテキスト画素のより忠実な保存,(3)イメージへのパーソナライズされた概念の適応,の3つの特徴がある。
論文 参考訳(メタデータ) (2024-04-08T17:52:29Z) - Decoupled Textual Embeddings for Customized Image Generation [62.98933630971543]
カスタマイズされたテキスト・ツー・イメージ生成は、ユーザが指定した概念を少数の画像で学習することを目的としている。
既存の方法は、通常、過剰な問題に悩まされ、学習された概念と対象と無関係な情報を絡み合わせる。
フレキシブルなテキスト・ツー・イメージ生成のための不整合概念の埋め込みを学習する新しいアプローチであるDETEXを提案する。
論文 参考訳(メタデータ) (2023-12-19T03:32:10Z) - FaceStudio: Put Your Face Everywhere in Seconds [23.381791316305332]
アイデンティティを保存する画像合成は、パーソナライズされたスタイリスティックなタッチを加えながら、被験者のアイデンティティを維持することを目指している。
Textual InversionやDreamBoothといった従来の手法は、カスタムイメージ作成に力を入れている。
本研究は,人間の画像に焦点をあてたアイデンティティ保存合成への新たなアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-05T11:02:45Z) - ReGeneration Learning of Diffusion Models with Rich Prompts for
Zero-Shot Image Translation [8.803251014279502]
大規模なテキスト・ツー・イメージモデルは、多彩で高忠実な画像を合成する素晴らしい能力を示した。
現在のモデルでは、編集プロセス中に元の画像の内容に大きな変更を加えることができる。
画像と画像の拡散モデル(ReDiffuser)における再生学習を提案する。
論文 参考訳(メタデータ) (2023-05-08T12:08:12Z) - Zero-shot Image-to-Image Translation [57.46189236379433]
手動のプロンプトを使わずに元の画像を保存できる画像から画像への変換法であるpix2pix-zeroを提案する。
本稿では,拡散過程全体を通して入力画像の相互注意マップを維持することを目的とした,相互注意誘導を提案する。
本手法では,これらの編集のための追加のトレーニングを必要とせず,既存のテキスト・画像拡散モデルを直接使用することができる。
論文 参考訳(メタデータ) (2023-02-06T18:59:51Z) - 3D GAN Inversion for Controllable Portrait Image Animation [45.55581298551192]
我々は新たに開発された3D GANを活用し、マルチビュー一貫性のある画像対象のポーズを明示的に制御できる。
ポートレート・イメージ・アニメーションの手法は、画像の品質、アイデンティティの保存、ポーズ・トランスファーの点で、従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2022-03-25T04:06:06Z) - Enjoy Your Editing: Controllable GANs for Image Editing via Latent Space
Navigation [136.53288628437355]
コントロール可能なセマンティックイメージ編集により、ユーザーはクリック数回で画像属性全体を変更できる。
現在のアプローチでは、絡み合った属性編集、グローバルなイメージアイデンティティの変更、フォトリアリズムの低下に悩まされることが多い。
本稿では,主に定性評価に焦点を当てた先行研究とは異なり,制御可能な編集性能を測定するための定量的評価手法を提案する。
論文 参考訳(メタデータ) (2021-02-01T21:38:36Z) - Look here! A parametric learning based approach to redirect visual
attention [49.609412873346386]
画像領域を微妙な画像編集によってより注目度の高いものにするための自動手法を提案する。
我々のモデルは、前景および背景画像領域に適用可能な、異なるグローバルパラメトリック変換セットを予測する。
編集により、任意の画像サイズでインタラクティブなレートでの推論が可能になり、簡単に動画に一般化できる。
論文 参考訳(メタデータ) (2020-08-12T16:08:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。