Attention Paper: How Generative AI Reshapes Digital Shadow Industry?
- URL: http://arxiv.org/abs/2305.18346v1
- Date: Fri, 26 May 2023 08:03:50 GMT
- Title: Attention Paper: How Generative AI Reshapes Digital Shadow Industry?
- Authors: Qichao Wang, Huan Ma, Wentao Wei, Hangyu Li, Liang Chen, Peilin Zhao,
Binwen Zhao, Bo Hu, Shu Zhang, Zibin Zheng, Bingzhe Wu
- Abstract summary: Black and shadow internet industries pose potential risks that can be identified and managed through digital risk management (DRM)
The paper will explore the new black and shadow techniques triggered by generative AI technology and provide insights for building the next-generation DRM system.
- Score: 41.38949535910943
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid development of digital economy has led to the emergence of various
black and shadow internet industries, which pose potential risks that can be
identified and managed through digital risk management (DRM) that uses
different techniques such as machine learning and deep learning. The evolution
of DRM architecture has been driven by changes in data forms. However, the
development of AI-generated content (AIGC) technology, such as ChatGPT and
Stable Diffusion, has given black and shadow industries powerful tools to
personalize data and generate realistic images and conversations for fraudulent
activities. This poses a challenge for DRM systems to control risks from the
source of data generation and to respond quickly to the fast-changing risk
environment. This paper aims to provide a technical analysis of the challenges
and opportunities of AIGC from upstream, midstream, and downstream paths of
black/shadow industries and suggest future directions for improving existing
risk control systems. The paper will explore the new black and shadow
techniques triggered by generative AI technology and provide insights for
building the next-generation DRM system.
Related papers
- Information Retrieval in the Age of Generative AI: The RGB Model [77.96475639967431]
This paper presents a novel quantitative approach to shed light on the complex information dynamics arising from the growing use of generative AI tools.
We propose a model to characterize the generation, indexing, and dissemination of information in response to new topics.
Our findings suggest that the rapid pace of generative AI adoption, combined with increasing user reliance, can outpace human verification, escalating the risk of inaccurate information proliferation.
arXiv Detail & Related papers (2025-04-29T10:21:40Z) - Exploring AI Text Generation, Retrieval-Augmented Generation, and Detection Technologies: a Comprehensive Overview [0.0]
Concerns surrounding AI-generated content, including issues of originality, bias, misinformation, and accountability, have become prominent.
This paper offers a comprehensive overview of AI text generators (AITGs), focusing on their evolution, capabilities, and ethical implications.
The paper explores future directions for improving detection accuracy, supporting ethical AI development, and increasing accessibility.
arXiv Detail & Related papers (2024-12-05T07:23:14Z) - Evolution and challenges of computer vision and deep learning technologies for analysing mixed construction and demolition waste [5.681772950719116]
This paper explores the challenges and opportunities in developing an advanced automated mixed C&DW management system.
We review various C&DW analysis techniques, concluding that DL-based visual methods are the optimal solution.
We also discuss C&DW datasets, their curation, and innovative methods for their creation.
arXiv Detail & Related papers (2024-09-19T22:38:26Z) - Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
Industrial Cyber-Physical Systems (ICPSs) are an integral component of modern manufacturing and industries.
By digitizing data throughout the product life cycle, Digital Twins (DTs) in ICPSs enable a shift from current industrial infrastructures to intelligent and adaptive infrastructures.
mechanisms that leverage sensing Industrial Internet of Things (IIoT) devices to share data for the construction of DTs are susceptible to adverse selection problems.
arXiv Detail & Related papers (2024-08-02T10:47:10Z) - Generative AI Models: Opportunities and Risks for Industry and Authorities [1.3914994102950027]
Generative AI models are capable of performing a wide range of tasks that traditionally require creativity and human understanding.
They learn patterns from existing data during training and can subsequently generate new content.
The use of generative AI models introduces novel IT security risks that need to be considered.
arXiv Detail & Related papers (2024-06-07T08:34:30Z) - Risks and Opportunities of Open-Source Generative AI [64.86989162783648]
Applications of Generative AI (Gen AI) are expected to revolutionize a number of different areas, ranging from science & medicine to education.
The potential for these seismic changes has triggered a lively debate about the potential risks of the technology, and resulted in calls for tighter regulation.
This regulation is likely to put at risk the budding field of open-source generative AI.
arXiv Detail & Related papers (2024-05-14T13:37:36Z) - Near to Mid-term Risks and Opportunities of Open-Source Generative AI [94.06233419171016]
Applications of Generative AI are expected to revolutionize a number of different areas, ranging from science & medicine to education.
The potential for these seismic changes has triggered a lively debate about potential risks and resulted in calls for tighter regulation.
This regulation is likely to put at risk the budding field of open-source Generative AI.
arXiv Detail & Related papers (2024-04-25T21:14:24Z) - Synthetic Image Generation in Cyber Influence Operations: An Emergent Threat? [0.0]
This report explores the potential and limitations of generative deep learning models, such as diffusion models, in fabricating convincing synthetic images.
We critically assess the accessibility, practicality, and output quality of these tools and their implications in threat scenarios of deception, influence, and subversion.
We generate content for several hypothetical cyber influence operations to demonstrate the current capabilities and limitations of these AI-driven methods for threat actors.
arXiv Detail & Related papers (2024-03-18T19:44:30Z) - AI Imagery and the Overton Window [0.0]
This paper is a literature review examining the concerns facing both AI developers and users today.
It discusses legalization challenges and ethical concerns, and concludes with how AI generative models can be tremendously useful.
arXiv Detail & Related papers (2023-05-31T18:01:04Z) - Guiding AI-Generated Digital Content with Wireless Perception [69.51950037942518]
We introduce an integration of wireless perception with AI-generated content (AIGC) to improve the quality of digital content production.
The framework employs a novel multi-scale perception technology to read user's posture, which is difficult to describe accurately in words, and transmits it to the AIGC model as skeleton images.
Since the production process imposes the user's posture as a constraint on the AIGC model, it makes the generated content more aligned with the user's requirements.
arXiv Detail & Related papers (2023-03-26T04:39:03Z) - Edge-Cloud Polarization and Collaboration: A Comprehensive Survey [61.05059817550049]
We conduct a systematic review for both cloud and edge AI.
We are the first to set up the collaborative learning mechanism for cloud and edge modeling.
We discuss potentials and practical experiences of some on-going advanced edge AI topics.
arXiv Detail & Related papers (2021-11-11T05:58:23Z) - Future of work: ethics [0.0]
Over-automation seems to be the driver of the digitalization process.
Digital technology should be designed to enhance human skills and make more productive use of human cognition and capacities.
arXiv Detail & Related papers (2021-04-06T15:20:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.