Evolution and challenges of computer vision and deep learning technologies for analysing mixed construction and demolition waste
- URL: http://arxiv.org/abs/2409.13112v1
- Date: Thu, 19 Sep 2024 22:38:26 GMT
- Title: Evolution and challenges of computer vision and deep learning technologies for analysing mixed construction and demolition waste
- Authors: Adrian Langley, Matthew Lonergan, Tao Huang, Mostafa Rahimi Azghadi,
- Abstract summary: This paper explores the challenges and opportunities in developing an advanced automated mixed C&DW management system.
We review various C&DW analysis techniques, concluding that DL-based visual methods are the optimal solution.
We also discuss C&DW datasets, their curation, and innovative methods for their creation.
- Score: 5.681772950719116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Improving the automatic and timely recognition of construction and demolition waste (C&DW) composition is crucial for enhancing business returns, economic outcomes, and sustainability. Technologies like computer vision, artificial intelligence (AI), robotics, and internet of things (IoT) are increasingly integrated into waste processing to achieve these goals. While deep learning (DL) models show promise in recognising homogeneous C&DW piles, few studies assess their performance with mixed, highly contaminated material in commercial settings. Drawing on extensive experience at a C&DW materials recovery facility (MRF) in Sydney, Australia, we explore the challenges and opportunities in developing an advanced automated mixed C&DW management system. We begin with an overview of the evolution of waste management in the construction industry, highlighting its environmental, economic, and societal impacts. We review various C&DW analysis techniques, concluding that DL-based visual methods are the optimal solution. Additionally, we examine the progression of sensor and camera technologies for C&DW analysis as well as the evolution of DL algorithms focused on object detection and material segmentation. We also discuss C&DW datasets, their curation, and innovative methods for their creation. Finally, we share insights on C&DW visual analysis, addressing technical and commercial challenges, research trends, and future directions for mixed C&DW analysis. This paper aims to improve the efficiency of C&DW management by providing valuable insights for ongoing and future research and development efforts in this critical sector.
Related papers
- From Noise to Nuance: Advances in Deep Generative Image Models [8.802499769896192]
Deep learning-based image generation has undergone a paradigm shift since 2021.
Recent developments in Stable Diffusion, DALL-E, and consistency models have redefined the capabilities and performance boundaries of image synthesis.
We investigate how enhanced multi-modal understanding and zero-shot generation capabilities are reshaping practical applications across industries.
arXiv Detail & Related papers (2024-12-12T02:09:04Z) - Advancing Recycling Efficiency: A Comparative Analysis of Deep Learning Models in Waste Classification [0.0]
The research tackles the pressing issue of waste classification for recycling by analyzing various deep learning models.
The results indicate the method significantly boosts accuracy in complex waste categories.
The research paves the way for future advancements in multi-category waste recycling.
arXiv Detail & Related papers (2024-11-05T03:44:54Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - Integrative Approaches in Cybersecurity and AI [0.0]
We identify key trends, challenges, and future directions that hold the potential to revolutionize the way organizations protect, analyze, and leverage their data.
Our findings highlight the necessity of cross-disciplinary strategies that incorporate AI-driven automation, real-time threat detection, and advanced data analytics to build more resilient and adaptive security architectures.
arXiv Detail & Related papers (2024-08-12T01:37:06Z) - Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
Industrial Cyber-Physical Systems (ICPSs) are an integral component of modern manufacturing and industries.
By digitizing data throughout the product life cycle, Digital Twins (DTs) in ICPSs enable a shift from current industrial infrastructures to intelligent and adaptive infrastructures.
mechanisms that leverage sensing Industrial Internet of Things (IIoT) devices to share data for the construction of DTs are susceptible to adverse selection problems.
arXiv Detail & Related papers (2024-08-02T10:47:10Z) - The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources [100.23208165760114]
Foundation model development attracts a rapidly expanding body of contributors, scientists, and applications.
To help shape responsible development practices, we introduce the Foundation Model Development Cheatsheet.
arXiv Detail & Related papers (2024-06-24T15:55:49Z) - State-Space Modeling in Long Sequence Processing: A Survey on Recurrence in the Transformer Era [59.279784235147254]
This survey provides an in-depth summary of the latest approaches that are based on recurrent models for sequential data processing.
The emerging picture suggests that there is room for thinking of novel routes, constituted by learning algorithms which depart from the standard Backpropagation Through Time.
arXiv Detail & Related papers (2024-06-13T12:51:22Z) - A Comprehensive Survey on Underwater Image Enhancement Based on Deep Learning [51.7818820745221]
Underwater image enhancement (UIE) presents a significant challenge within computer vision research.
Despite the development of numerous UIE algorithms, a thorough and systematic review is still absent.
arXiv Detail & Related papers (2024-05-30T04:46:40Z) - Leveraging Large Language Model for Automatic Evolving of Industrial
Data-Centric R&D Cycle [20.30730316993658]
Data-driven solutions are emerging as powerful tools to address multifarious industrial tasks.
Although data-centric R&D has been pivotal in harnessing these solutions, it often comes with significant costs in terms of human, computational, and time resources.
This paper delves into the potential of large language models (LLMs) to expedite the evolution cycle of data-centric R&D.
arXiv Detail & Related papers (2023-10-17T13:18:02Z) - Segment Any Building [8.12405696290333]
This manuscript accentuates the potency of harnessing diversified datasets in tandem with cutting-edge representation learning paradigms for building segmentation in such images.
Our avant-garde joint training regimen underscores the merit of our approach, bearing significant implications in pivotal domains such as urban infrastructural development, disaster mitigation strategies, and ecological surveillance.
The outcomes of this research both fortify the foundations for ensuing scholarly pursuits and presage a horizon replete with innovative applications in the discipline of building segmentation.
arXiv Detail & Related papers (2023-10-02T12:49:20Z) - Attention Paper: How Generative AI Reshapes Digital Shadow Industry? [41.38949535910943]
Black and shadow internet industries pose potential risks that can be identified and managed through digital risk management (DRM)
The paper will explore the new black and shadow techniques triggered by generative AI technology and provide insights for building the next-generation DRM system.
arXiv Detail & Related papers (2023-05-26T08:03:50Z) - ChatGPT-Like Large-Scale Foundation Models for Prognostics and Health
Management: A Survey and Roadmaps [8.62142522782743]
Prognostics and health management (PHM) technology plays a critical role in industrial production and equipment maintenance.
Large-scale foundation models (LSF-Models) such as ChatGPT and DALLE-E marks the entry of AI into a new era of AI-2.0.
This paper systematically expounds on the key components and latest developments of LSF-Models.
arXiv Detail & Related papers (2023-05-10T21:37:44Z) - DA-VEGAN: Differentiably Augmenting VAE-GAN for microstructure
reconstruction from extremely small data sets [110.60233593474796]
DA-VEGAN is a model with two central innovations.
A $beta$-variational autoencoder is incorporated into a hybrid GAN architecture.
A custom differentiable data augmentation scheme is developed specifically for this architecture.
arXiv Detail & Related papers (2023-02-17T08:49:09Z) - Critical Learning Periods for Multisensory Integration in Deep Networks [112.40005682521638]
We show that the ability of a neural network to integrate information from diverse sources hinges critically on being exposed to properly correlated signals during the early phases of training.
We show that critical periods arise from the complex and unstable early transient dynamics, which are decisive of final performance of the trained system and their learned representations.
arXiv Detail & Related papers (2022-10-06T23:50:38Z) - DC-BENCH: Dataset Condensation Benchmark [79.18718490863908]
This work provides the first large-scale standardized benchmark on dataset condensation.
It consists of a suite of evaluations to comprehensively reflect the generability and effectiveness of condensation methods.
The benchmark library is open-sourced to facilitate future research and application.
arXiv Detail & Related papers (2022-07-20T03:54:05Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
This review aims at providing a comprehensive vision of the main state-of-the-art libraries and frameworks for machine learning and data analytics available today.
The main simulation, emulation, deployment systems, and testbeds for experimental research on the Edge-to-Cloud Continuum available today are also surveyed.
arXiv Detail & Related papers (2022-04-29T08:06:05Z) - Machine Learning and Artificial Intelligence in Circular Economy: A
Bibliometric Analysis and Systematic Literature Review [0.0]
Circular economy (CE) aims to complete the product life cycle loop by bringing out the highest values from raw materials in the design phase and later on by reusing, recycling, and remanufacturing.
This study explores the adoption and integration of applied AI techniques in CE.
arXiv Detail & Related papers (2022-04-01T07:05:13Z) - Automatic Gaze Analysis: A Survey of DeepLearning based Approaches [61.32686939754183]
Eye gaze analysis is an important research problem in the field of computer vision and Human-Computer Interaction.
There are several open questions including what are the important cues to interpret gaze direction in an unconstrained environment.
We review the progress across a range of gaze analysis tasks and applications to shed light on these fundamental questions.
arXiv Detail & Related papers (2021-08-12T00:30:39Z) - Using satellite imagery to understand and promote sustainable
development [87.72561825617062]
We synthesize the growing literature that uses satellite imagery to understand sustainable development outcomes.
We quantify the paucity of ground data on key human-related outcomes and the growing abundance and resolution of satellite imagery.
We review recent machine learning approaches to model-building in the context of scarce and noisy training data.
arXiv Detail & Related papers (2020-09-23T05:20:00Z) - Data-Driven Aerospace Engineering: Reframing the Industry with Machine
Learning [49.367020832638794]
The aerospace industry is poised to capitalize on big data and machine learning.
Recent trends will be explored in context of critical challenges in design, manufacturing, verification and services.
arXiv Detail & Related papers (2020-08-24T22:40:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.