論文の概要: Multi-Objective Genetic Algorithm for Multi-View Feature Selection
- arxiv url: http://arxiv.org/abs/2305.18352v1
- Date: Fri, 26 May 2023 13:25:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 22:23:05.945373
- Title: Multi-Objective Genetic Algorithm for Multi-View Feature Selection
- Title(参考訳): 多視点特徴選択のための多目的遺伝的アルゴリズム
- Authors: Vandad Imani, Carlos Sevilla-Salcedo, Vittorio Fortino, and Jussi
Tohka
- Abstract要約: 多視点データに対する従来の特徴選択手法の限界を克服する新しい遺伝的アルゴリズム戦略を提案する。
提案手法は多視点多目的特徴選択遺伝的アルゴリズム (MMFS-GA) と呼ばれ、ビュー内およびビュー間における特徴の最適なサブセットを同時に選択する。
合成データと実データを含む3つのベンチマークデータセットに対する評価結果から,最良基準法よりも優れた結果が得られた。
- 参考スコア(独自算出の注目度): 0.2936007114555107
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-view datasets offer diverse forms of data that can enhance prediction
models by providing complementary information. However, the use of multi-view
data leads to an increase in high-dimensional data, which poses significant
challenges for the prediction models that can lead to poor generalization.
Therefore, relevant feature selection from multi-view datasets is important as
it not only addresses the poor generalization but also enhances the
interpretability of the models. Despite the success of traditional feature
selection methods, they have limitations in leveraging intrinsic information
across modalities, lacking generalizability, and being tailored to specific
classification tasks. We propose a novel genetic algorithm strategy to overcome
these limitations of traditional feature selection methods for multi-view data.
Our proposed approach, called the multi-view multi-objective feature selection
genetic algorithm (MMFS-GA), simultaneously selects the optimal subset of
features within a view and between views under a unified framework. The MMFS-GA
framework demonstrates superior performance and interpretability for feature
selection on multi-view datasets in both binary and multiclass classification
tasks. The results of our evaluations on three benchmark datasets, including
synthetic and real data, show improvement over the best baseline methods. This
work provides a promising solution for multi-view feature selection and opens
up new possibilities for further research in multi-view datasets.
- Abstract(参考訳): マルチビューデータセットは、補完情報を提供することで予測モデルを強化するさまざまな形式のデータを提供する。
しかし、多視点データの利用は高次元データの増加につながるため、予測モデルに大きな課題が生じ、一般化の低さにつながる。
したがって、マルチビューデータセットからの適切な特徴選択は、貧弱な一般化に対処するだけでなく、モデルの解釈可能性を高めるために重要である。
従来の特徴選択法の成功にもかかわらず、それらはモダリティにまたがる本質的な情報の活用に限界があり、一般化性に欠け、特定の分類タスクに適合する。
本稿では,従来の特徴選択手法の制約を克服する新しい遺伝的アルゴリズム戦略を提案する。
提案手法はMulti-view multi-jective feature selection genetic algorithm (MMFS-GA) と呼ばれ、ビュー内の特徴の最適なサブセットと統合されたフレームワークによるビューを同時に選択する。
MMFS-GAフレームワークは、バイナリとマルチクラスの両方の分類タスクにおいて、多視点データセットにおける特徴選択の優れたパフォーマンスと解釈可能性を示す。
合成データと実データを含む3つのベンチマークデータセットの評価結果から,最良基準法よりも優れた結果が得られた。
この作業は、マルチビュー機能選択のための有望なソリューションを提供し、マルチビューデータセットのさらなる研究のための新たな可能性を開く。
関連論文リスト
- MvFS: Multi-view Feature Selection for Recommender System [7.0190343591422115]
本稿では,各インスタンスのより効率的な情報機能を選択するMulti-view Feature Selection (MvFS)を提案する。
MvFSは複数のサブネットワークで構成されるマルチビューネットワークを採用しており、それぞれがデータの一部の特徴的重要性を計測することを学ぶ。
MvFSは、各分野に独立して適用される効果的な重要スコアモデリング戦略を採用している。
論文 参考訳(メタデータ) (2023-09-05T09:06:34Z) - One-step Multi-view Clustering with Diverse Representation [47.41455937479201]
本稿では,多視点学習と$k$-meansを統合フレームワークに組み込んだ一段階のマルチビュークラスタリングを提案する。
そこで本研究では,効率の良い最適化アルゴリズムを開発し,その解法について述べる。
論文 参考訳(メタデータ) (2023-06-08T02:52:24Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - Fast Multi-view Clustering via Ensembles: Towards Scalability,
Superiority, and Simplicity [63.85428043085567]
本稿では,アンサンブル(FastMICE)アプローチによる高速なマルチビュークラスタリングを提案する。
ランダムなビュー群の概念は、多目的なビューワイズ関係を捉えるために提示される。
FastMICEは、ほぼ線形時間と空間の複雑さを持ち、データセット固有のチューニングは不要である。
論文 参考訳(メタデータ) (2022-03-22T09:51:24Z) - Auto-weighted Multi-view Feature Selection with Graph Optimization [90.26124046530319]
グラフ学習に基づく新しい教師なしマルチビュー特徴選択モデルを提案する。
1) 特徴選択過程において, 異なる視点で共有されたコンセンサス類似度グラフが学習される。
各種データセットを用いた実験により,提案手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-11T03:25:25Z) - Learning Inter- and Intra-manifolds for Matrix Factorization-based
Multi-Aspect Data Clustering [3.756550107432323]
近年,マルチビューやマルチタイプリレーショナルデータなど,複数の側面を持つデータのクラスタリングが普及している。
我々は,データクラスタリングのための多種多様な多様体を学習するために,異なるデータ型(またはビュー)のデータポイントの距離情報を利用するNMFフレームワークに多様体を組み込むことを提案する。
いくつかのデータセットの結果から,提案手法は精度と効率の両面において,最先端のマルチアスペクトデータクラスタリング手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-09-07T02:21:08Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
本稿では,適応グラフ正規化に基づくマルチビュークラスタリング手法を提案する。
5つの多視点ベンチマークの実験結果から,提案手法が他の最先端手法をクリアマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-08-23T08:25:06Z) - Embedded Deep Bilinear Interactive Information and Selective Fusion for
Multi-view Learning [70.67092105994598]
本稿では,上記の2つの側面に着目した,新しい多視点学習フレームワークを提案する。
特に、さまざまな深層ニューラルネットワークをトレーニングして、様々なビュー内表現を学習する。
6つの公開データセットの実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-07-13T01:13:23Z) - Genetic Programming for Evolving a Front of Interpretable Models for
Data Visualisation [4.4181317696554325]
GPtSNEという遺伝的プログラミング手法を用いて,データセットから高品質な可視化へ解釈可能なマッピングを進化させる手法を提案する。
多目的アプローチは、視覚的品質とモデルの複雑さの間に異なるトレードオフをもたらす、単一の実行で様々な可視化を生成するように設計されている。
論文 参考訳(メタデータ) (2020-01-27T04:03:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。