DeepSI: Interactive Deep Learning for Semantic Interaction
- URL: http://arxiv.org/abs/2305.18357v1
- Date: Fri, 26 May 2023 18:05:57 GMT
- Title: DeepSI: Interactive Deep Learning for Semantic Interaction
- Authors: Yali Bian, Chris North
- Abstract summary: We propose a framework that integrates deep learning into the human-in-the-loop interactive sensemaking pipeline.
Deep learning extracts meaningful representations from raw data, which improves semantic interaction inference.
Semantic interactions are exploited to fine-tune the deep learning representations, which then improves semantic interaction inference.
- Score: 5.188825486231326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we design novel interactive deep learning methods to improve
semantic interactions in visual analytics applications. The ability of semantic
interaction to infer analysts' precise intents during sensemaking is dependent
on the quality of the underlying data representation. We propose the
$\text{DeepSI}_{\text{finetune}}$ framework that integrates deep learning into
the human-in-the-loop interactive sensemaking pipeline, with two important
properties. First, deep learning extracts meaningful representations from raw
data, which improves semantic interaction inference. Second, semantic
interactions are exploited to fine-tune the deep learning representations,
which then further improves semantic interaction inference. This feedback loop
between human interaction and deep learning enables efficient learning of user-
and task-specific representations. To evaluate the advantage of embedding the
deep learning within the semantic interaction loop, we compare
$\text{DeepSI}_{\text{finetune}}$ against a state-of-the-art but more basic use
of deep learning as only a feature extractor pre-processed outside of the
interactive loop. Results of two complementary studies, a human-centered
qualitative case study and an algorithm-centered simulation-based quantitative
experiment, show that $\text{DeepSI}_{\text{finetune}}$ more accurately
captures users' complex mental models with fewer interactions.
Related papers
- Visual-Geometric Collaborative Guidance for Affordance Learning [63.038406948791454]
We propose a visual-geometric collaborative guided affordance learning network that incorporates visual and geometric cues.
Our method outperforms the representative models regarding objective metrics and visual quality.
arXiv Detail & Related papers (2024-10-15T07:35:51Z) - Learning Manipulation by Predicting Interaction [85.57297574510507]
We propose a general pre-training pipeline that learns Manipulation by Predicting the Interaction.
The experimental results demonstrate that MPI exhibits remarkable improvement by 10% to 64% compared with previous state-of-the-art in real-world robot platforms.
arXiv Detail & Related papers (2024-06-01T13:28:31Z) - Enhancing HOI Detection with Contextual Cues from Large Vision-Language Models [56.257840490146]
ConCue is a novel approach for improving visual feature extraction in HOI detection.
We develop a transformer-based feature extraction module with a multi-tower architecture that integrates contextual cues into both instance and interaction detectors.
arXiv Detail & Related papers (2023-11-26T09:11:32Z) - Detecting Any Human-Object Interaction Relationship: Universal HOI
Detector with Spatial Prompt Learning on Foundation Models [55.20626448358655]
This study explores the universal interaction recognition in an open-world setting through the use of Vision-Language (VL) foundation models and large language models (LLMs)
Our design includes an HO Prompt-guided Decoder (HOPD), facilitates the association of high-level relation representations in the foundation model with various HO pairs within the image.
For open-category interaction recognition, our method supports either of two input types: interaction phrase or interpretive sentence.
arXiv Detail & Related papers (2023-11-07T08:27:32Z) - DIAL: Deep Interactive and Active Learning for Semantic Segmentation in
Remote Sensing [34.209686918341475]
We propose to build up a collaboration between a deep neural network and a human in the loop.
In a nutshell, the agent iteratively interacts with the network to correct its initially flawed predictions.
We show that active learning based on uncertainty estimation enables to quickly lead the user towards mistakes.
arXiv Detail & Related papers (2022-01-04T09:11:58Z) - RR-Net: Injecting Interactive Semantics in Human-Object Interaction
Detection [40.65483058890176]
Latest end-to-end HOI detectors are short of relation reasoning, which leads to inability to learn HOI-specific interactive semantics for predictions.
We first present a progressive Relation-aware Frame, which brings a new structure and parameter sharing pattern for interaction inference.
Based on modules above, we construct an end-to-end trainable framework named Relation Reasoning Network (abbr. RR-Net)
arXiv Detail & Related papers (2021-04-30T14:03:10Z) - Transferable Interactiveness Knowledge for Human-Object Interaction
Detection [46.89715038756862]
We explore interactiveness knowledge which indicates whether a human and an object interact with each other or not.
We found that interactiveness knowledge can be learned across HOI datasets and bridge the gap between diverse HOI category settings.
Our core idea is to exploit an interactiveness network to learn the general interactiveness knowledge from multiple HOI datasets.
arXiv Detail & Related papers (2021-01-25T18:21:07Z) - Learning Human-Object Interaction Detection using Interaction Points [140.0200950601552]
We propose a novel fully-convolutional approach that directly detects the interactions between human-object pairs.
Our network predicts interaction points, which directly localize and classify the inter-action.
Experiments are performed on two popular benchmarks: V-COCO and HICO-DET.
arXiv Detail & Related papers (2020-03-31T08:42:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.