Visual-Geometric Collaborative Guidance for Affordance Learning
- URL: http://arxiv.org/abs/2410.11363v1
- Date: Tue, 15 Oct 2024 07:35:51 GMT
- Title: Visual-Geometric Collaborative Guidance for Affordance Learning
- Authors: Hongchen Luo, Wei Zhai, Jiao Wang, Yang Cao, Zheng-Jun Zha,
- Abstract summary: We propose a visual-geometric collaborative guided affordance learning network that incorporates visual and geometric cues.
Our method outperforms the representative models regarding objective metrics and visual quality.
- Score: 63.038406948791454
- License:
- Abstract: Perceiving potential ``action possibilities'' (\ie, affordance) regions of images and learning interactive functionalities of objects from human demonstration is a challenging task due to the diversity of human-object interactions. Prevailing affordance learning algorithms often adopt the label assignment paradigm and presume that there is a unique relationship between functional region and affordance label, yielding poor performance when adapting to unseen environments with large appearance variations. In this paper, we propose to leverage interactive affinity for affordance learning, \ie extracting interactive affinity from human-object interaction and transferring it to non-interactive objects. Interactive affinity, which represents the contacts between different parts of the human body and local regions of the target object, can provide inherent cues of interconnectivity between humans and objects, thereby reducing the ambiguity of the perceived action possibilities. To this end, we propose a visual-geometric collaborative guided affordance learning network that incorporates visual and geometric cues to excavate interactive affinity from human-object interactions jointly. Besides, a contact-driven affordance learning (CAL) dataset is constructed by collecting and labeling over 55,047 images. Experimental results demonstrate that our method outperforms the representative models regarding objective metrics and visual quality. Project: \href{https://github.com/lhc1224/VCR-Net}{github.com/lhc1224/VCR-Net}.
Related papers
- LEMON: Learning 3D Human-Object Interaction Relation from 2D Images [56.6123961391372]
Learning 3D human-object interaction relation is pivotal to embodied AI and interaction modeling.
Most existing methods approach the goal by learning to predict isolated interaction elements.
We present LEMON, a unified model that mines interaction intentions of the counterparts and employs curvatures to guide the extraction of geometric correlations.
arXiv Detail & Related papers (2023-12-14T14:10:57Z) - Disentangled Interaction Representation for One-Stage Human-Object
Interaction Detection [70.96299509159981]
Human-Object Interaction (HOI) detection is a core task for human-centric image understanding.
Recent one-stage methods adopt a transformer decoder to collect image-wide cues that are useful for interaction prediction.
Traditional two-stage methods benefit significantly from their ability to compose interaction features in a disentangled and explainable manner.
arXiv Detail & Related papers (2023-12-04T08:02:59Z) - Object-agnostic Affordance Categorization via Unsupervised Learning of
Graph Embeddings [6.371828910727037]
Acquiring knowledge about object interactions and affordances can facilitate scene understanding and human-robot collaboration tasks.
We address the problem of affordance categorization for class-agnostic objects with an open set of interactions.
A novel depth-informed qualitative spatial representation is proposed for the construction of Activity Graphs.
arXiv Detail & Related papers (2023-03-30T15:04:04Z) - Skeleton-Based Mutually Assisted Interacted Object Localization and
Human Action Recognition [111.87412719773889]
We propose a joint learning framework for "interacted object localization" and "human action recognition" based on skeleton data.
Our method achieves the best or competitive performance with the state-of-the-art methods for human action recognition.
arXiv Detail & Related papers (2021-10-28T10:09:34Z) - Transferable Interactiveness Knowledge for Human-Object Interaction
Detection [46.89715038756862]
We explore interactiveness knowledge which indicates whether a human and an object interact with each other or not.
We found that interactiveness knowledge can be learned across HOI datasets and bridge the gap between diverse HOI category settings.
Our core idea is to exploit an interactiveness network to learn the general interactiveness knowledge from multiple HOI datasets.
arXiv Detail & Related papers (2021-01-25T18:21:07Z) - Learning Human-Object Interaction Detection using Interaction Points [140.0200950601552]
We propose a novel fully-convolutional approach that directly detects the interactions between human-object pairs.
Our network predicts interaction points, which directly localize and classify the inter-action.
Experiments are performed on two popular benchmarks: V-COCO and HICO-DET.
arXiv Detail & Related papers (2020-03-31T08:42:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.