Influence of higher order electron-phonon interaction on the electron-related lattice thermal properties of 2d Dirac crystal
- URL: http://arxiv.org/abs/2305.18369v3
- Date: Sun, 12 May 2024 23:59:21 GMT
- Title: Influence of higher order electron-phonon interaction on the electron-related lattice thermal properties of 2d Dirac crystal
- Authors: Sina Kazemian, Giovanni Fanchini,
- Abstract summary: We present an accurate expression for the phonon scattering rate and e-ph thermal conductivity in 2D Dirac crystals, accounting for short-dispersive wavelength phonons.
We emphasize the importance of incorporating second-order e-ph interactions, specifically the EP-E*P* interaction involving the decay of an electron and phonon.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To understand the essential properties of Dirac crystals, such as their thermal conductivity, we require models that consider the interaction between Dirac electrons and dispersive acoustic phonons. The exceptionally high thermal conductivity in 2D Dirac crystals is attributed to near-ideal phonon quantum gases, while undesired limitations arise from electron-phonon (e-ph) interactions which have been shown to limit the thermal conductivity up to several microns away. The e-ph thermal conductivity is directly linked to the phonon scattering rate. Conventional calculations overlook phonons with short-dispersive wavelengths, rendering them inadequate for analyzing 2D Dirac crystals. The phonon scattering rate is typically calculated up to the first-order magnitude, considering 3-particle interactions involving the decay of an electron and phonon (EP-E*) to create a new electron. However, processes involving the decay of an electron and the creation of a new electron and phonon (E-E*P*) are neglected. In this study, we present an accurate expression for the phonon scattering rate and e-ph thermal conductivity in 2D Dirac crystals, accounting for short-dispersive wavelength phonons. We demonstrate the significance of the E-E*P* process even at room temperature in calculating the phonon scattering rate and e-ph thermal conductivity, particularly for first-order e-ph interactions. Furthermore, we emphasize the importance of incorporating second-order e-ph interactions, specifically the EP-E*P* interaction involving the decay of an electron and phonon and the creation of a new electron-phonon pair, to accurately determine the phonon scattering rate and e-ph thermal conductivity at high temperatures and low Fermi energies. This 4-particle interaction process plays a crucial role in characterizing these properties effectively.
Related papers
- Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Thermal self-oscillations in monolayer graphene coupled to a
superconducting microwave cavity [58.720142291102135]
We observe thermal self-oscillations in a monolayer graphene flake coupled to superconducting resonator.
The experimental observations fit well with theoretical model based on thermal instability.
The modelling of the oscillation sidebands provides a method to evaluate electron phonon coupling in disordered graphene sample at low energies.
arXiv Detail & Related papers (2022-05-27T15:38:41Z) - Unraveling the temperature dynamics and hot electron generation in
tunable gap-plasmon metasurface absorbers [0.0]
Localized plasmons formed in ultrathin metallic nanogaps can lead to robust absorption of incident light.
Plasmon metasurfaces based on this effect can efficiently generate energetic charge carriers, also known as hot electrons.
arXiv Detail & Related papers (2022-03-29T20:51:14Z) - Theory of Superconductivity Mediated by Topological Phonons [0.0]
Topological phononic insulators are the counterpart of three-dimensional quantum spin Hall insulators in phononic systems.
We propose a theoretical framework for the possible superconducting phase in these materials.
We show that the superconducting critical temperature has a non-monotonic behaviour with respect to the phononic frequency in the Kramers-like point.
arXiv Detail & Related papers (2022-03-07T16:24:07Z) - Indirect exciton-phonon dynamics in MoS2 revealed by ultrafast electron
diffraction [5.782172606425799]
Transition metal dichalcogenides layered nano-crystals are emerging as promising candidates for next-generation optoelectronic and quantum devices.
Here, we use ultrafast electron diffraction and ab initio calculations to investigate the many-body structural dynamics following nearly-resonant excitation of low-energy indirect excitons in MoS2.
Our results highlight the strong selectivity of phononic excitations directly associated with the specific indirect-exciton nature of the wavelength-dependent electronic transitions triggered in the system.
arXiv Detail & Related papers (2021-12-30T23:23:08Z) - Engineering the Radiative Dynamics of Thermalized Excitons with Metal
Interfaces [58.720142291102135]
We analyze the emission properties of excitons in TMDCs near planar metal interfaces.
We find suppression or enhancement of emission relative to the point dipole case by several orders of magnitude.
nanoscale optical cavities are a viable pathway to generating long-lifetime exciton states in TMDCs.
arXiv Detail & Related papers (2021-10-11T19:40:24Z) - Inelastic Mach-Zehnder Interferometry with Free Electrons [0.0]
We use a novel scanning electron Mach-Zehnder interferometer constructed in a conventional transmission electron microscope to perform inelastic interferometric imaging with free electrons.
We show that the interference signal formed by inelastically scattered electrons is pi out of phase with respect to that formed by elastically scattered electrons.
arXiv Detail & Related papers (2021-10-06T02:57:18Z) - Electronic decay process spectra including nuclear degrees of freedom [49.1574468325115]
We explore the ultra-rapid electronic motion spanning attoseconds to femtoseconds, demonstrating that it is equally integral and relevant to the discipline.
The advent of ultrashort attosecond pulse technology has revolutionized our ability to directly observe electronic rearrangements in atoms and molecules.
arXiv Detail & Related papers (2021-02-10T16:51:48Z) - Effect of phonons on the electron spin resonance absorption spectrum [62.997667081978825]
We model the effect of phonons and temperature on the electron spin resonance (ESR) signal in magnetically active systems.
We find that the suppression of ESR signals is due to phonon broadening but not based on the common assumption of orbital quenching.
arXiv Detail & Related papers (2020-04-22T01:13:07Z) - Resonant high-energy bremsstrahlung of ultrarelativistic electrons in
the field of a nucleus and a pulsed light wave [68.8204255655161]
Research investigates the resonant high-energy spontaneous bremsstrahlung of ultrarelativistic electrons with considerable energies in the field of a nucleus and a quasimonochromatic laser wave.
arXiv Detail & Related papers (2020-04-05T16:27:11Z) - Plasmon Oscillations and de Broglie's Matter Waves Instabilities [0.0]
We study the effect of matter-wave instability on electron beam transport with arbitrary degree of degeneracy.
The quantum charge screening and the chemical potential effects on the matter-wave formation and instabilities are discussed in detail.
arXiv Detail & Related papers (2020-02-10T17:35:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.